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Este trabajo presenta una metodologia para la extraccion de la actividad
respiratoria derivada de un ECG (EDR, por sus siglas en ingles), basado
en el enfoque de amplitud modulada (AM). Esto permite redefinir
las metodologias actuales para obtener una sefial EDR maés continua,
con altos factores de correlaciéon y un retraso menor entre la EDR
vy la actividad respiratoria. Se implementaron dos algoritmos: uno
utilizando la modulacién de la amplitud del pico R (EDRAM) y el
otro aplicando un filtro paso-banda en el espectro de frecuencia de la
respiracién. A diferencia de otros trabajos en la literatura, se utilizan
filtros convencionales de bajo orden pero sin sacrificar el factor de
correlacién (0.76 y 0.67) y manteniendo un retardo de ~0.27s (con
EDRAM) en un ciclo de ~6s. Se realizd una prueba de robustez, donde
se muestra una tolerancia a ruido blanco de hasta un 20% del valor
maximo antes de que el factor de correlacién bajara considerablemente.
El algoritmo EDRAM se aplicé con éxito en un prototipo de sistema
portable. Las dos metodologias propuestas muestran ventajas como
el procesamiento en tiempo real y robustez bajo ciertos ruidos. La
perspectiva de AM propuesta soporta el uso de ambos algoritmos
para aplicaciones tipicas con alta eficiencia, bajo costo computacional
y facilidad de implementacién. Estas caracteristicas hacen que esta
técnica facilite el desarrollo de sistemas portétiles, asi como para

incrementar la informacién de las bases de datos actuales.
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This work presents the development of an ECG-Derived Respiration
(EDR) methodology based on the amplitude modulation approach. It
allows to redefine actual methodologies in order to obtain a continuous
EDR signals with high correlations and small delay between EDR
and respiration activity. Two algorithms are implemented: one of
them using the amplitude modulation of the R-peak (EDRAM) and
another one applying a band-pass filter in the bandwidth of respiration.
Unlike other techniques in literature, conventional low order filters are
applied without sacrifice of correlation factor (0.76 and 0.67) and a
minimum delay of 0.27s (with EDRAM) in a ~6s cycle. A robustness
test was performed, and it shows a noise tolerance of up to 20% of the
maximum value before its correlation factor drops considerably. The
application into a wearable sensor was successfully implemented. The
two methodologies proposed show advantages like real-time processing
and robustness under certain noises. The proposed AM perspective
supports the use of both algorithms for typical applications with high
efficiency, low computational cost and ease of implementation. These
characteristics result on a technique that facilitates the development of

wearable systems, and to increase the information of actual databases.

time.

INTRODUCTION

The respiratory activity is an important clinical
parameter that is not commonly monitored.
Many techniques have been developed to
measure the respiration activity directly, e.g.
nasal temperature, airflow, chest impedance,
body-volume change, among others. Some
indirect methods are Electrocardiography
(ECG) Derived Respiration (EDR), Blood
Pressure Derived Respiration (BPDR), and
Photoplethysmography  Derived Respiration
(PDR) [1]. With indirect methods, software of
conventional ECG, BP or PPG monitors can be
updated to achieve the respiration monitoring
without any hardware adjustment.

The most studied indirect method to monitor
respiratory activity is the EDR, because the
ECG is commonly monitored [1-9].

The EDR techniques are based on three
facts: 1) the relative position of the heart
to the electrodes changes during respiration,
what increases/decreases the distance of the
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ECG source to the electrodes [3]; 2) the
thoracic impedance varies with the airflow
in the lungs, which changes the medium’s
resistivity that signal must cross to reach the
electrodes [3,10] and; 3) the mean electrical
axis of the cardiac vector changes its direction
during respiration [10,11]. These facts induce
an amplitude modulation (AM) of the ECG
amplitude detected at the electrodes.

Many approaches have been proposed for
EDR calculation [12]. Among them are the
R-peak amplitude [6], RS-peak’s amplitude
difference, QRS area [5,13], and filtered ECG.
Some mathematical tools have also been used
as principal component analysis[10,14], wavelet
transformations [9,10], adaptive filters [2],
special ECG-geometry features [8] and other
statistical tools [3].

The most popular EDR techniques are
those related to the QRS complex features.
However, all these techniques are very sensitive
to baseline wander. Recent research that use
these approaches focused, most of the work, in
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an effective baseline-wander removal technique,
in order to clean the ECG without affecting the
frequency properties of the signal [1,3,6].

Some common principles used to generate an
EDR signal are [12]:

Band-pass filtered ECG: Using this principle
it is possible to generate an EDR signal from
band-passing the ECG in the bandwidth of
respiratory activity (0.15-0.8Hz or 9-48bpm)
[11,15,16]. The main disadvantage is that it
is sensitive to baseline noises, because target
frequencies overlap with noise sources that
produce the baseline drift. Consequently, it is
necessary to include an effective baseline wander
removal with non-conventional filters.

R-peak amplitudes: In this principle, the
amplitude variations of the R-peaks, induced by
respiratory activity, are detected. These points
are used as discrete samples of the EDR, and
a signal reconstruction is computed based on
them. As mentioned before, this technique is
very sensitive to noise although R-peak has a big
Signal-to-Noise ratio (SNR) [3].

RS-peak’s amplitude difference: This
principle uses the detected R-peaks, S-peaks,
and their amplitude differences. Such differences
are then used as discrete samples for a signal
reconstruction. With the use of two points,
slightly more computation is needed, but more
robustness to baseline wander noise may be
achieved.

QRS area: This principle uses the detected
Q-, R- and S-peaks. Based on such points, a
triangle is generated for each QRS complex
and its area is quantified. For this method,
those areas are the discrete samples used for
the signal reconstruction. With the use of three
points, more computation is needed, but more
robustness to baseline wander noise may be
obtained [13]. However, it is important to
mention that Q- and S-peaks have a low SNR.
Therefore, these are harder to identify, what
introduces other error sources.

From all the methods mentioned above,
only the band-pass filtered ECG allows a
continuous monitoring of the respiratory activity,
while others have relatively long and non-
constant sampling periods (one per heart beat).
Considering the fact that high respiratory

activity imply high heart rates, as well as own
observations in conventional measurements, it
is possible to assume that there are more than
two heartbeats per respiratory phase (unless the
respiratory rate is increased intentionally). This
means that Nyquist’s frequency is achieved and,
therefore, respiratory phase and rate can be
monitored.

Although the EDR is not a new
technique, the technological trend to develop
wearable systems has renewed the interest for
methodologies that allow the reduction of signal
processing, hardware and energy requirements
for multiple signal acquisition [10]. The huge
databases freely available, like PhysioNet [17],
are also a core application for the EDR, since
it may provide additional information if ECG
is present. It is also important for applications
where a reduced number of sensors is valued, like
sleep studies [18], measurements on children or
patients with neurological impairment [19].

This work is focused on the development of
an EDR algorithm based on the AM of the ECG
caused by the respiratory activity. The main
objective is generating an EDR signal with an
output frequency of at least 1Hz, a correlation
factor bigger than 0.4 and a minimal delay
between the EDR and the actual respiration.

METHODOLOGY

For the development of this work, the
mathematical approach of the Amplitude
Modulation of ECG is initially presented. Two
algorithms are defined as suitable continuous
and small delay EDR methods, one related with
the R-peak amplitude (EDRAM) and another
with the band-pass filtering of ECG (EDRBP).
A quantitative comparison is made with other
algorithms. A statistical evaluation of robustness
is also done to the proposed algorithms. Finally,
the EDRAM is also test with raw data obtained
from a wearable system.

Mathematical Approach

An electrical signal can be expressed as the sum
of all of its electrical components. The signals
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Table 1 Spectral bandwidth of the components of Eq. (1)

Signal Symbol Source Bandwidth
AM ECG Y Heart Activity 0.67-50Hz*
Electromagnetic noise Nl Power lines and electronic devices 50/60Hz
High frequency noise np Electronic devices, transmission signals, etc. >50Hz
White noise N Inherent acquisition error >0Hz
Wondering baseline T Electrode/cable movement, dirtiness on skin, etc. < 1Hz

@Bandwidth requirement for clinical ECG /rate monitors, although a standard clinical application has a bandwidth

up to 300 Hz [20, 21].
It may vary according to geographic location.

that compose the acquired ECG can be mainly
categorized as: pure ECG signal (y), power line
noise (ny;), higher frequency noises (nj), white
noise (n,,) and the baseline wander noises (ngy).

ECG(t) = y(t) + np(t) + np(t) + nw(t) + ny(t)

1)
Where t stands for time. It is important to notice
that Eq. (1) does not express the existence of the
EDR because it is not an electrical component
but a modulation effect over the ECG. Table 1,
describes the source and bandwidth of each of
the components in Eq. (1).

The AM is a technique wused in
telecommunication, which sends a desired signal
(e.g., EDR) over a carrier signal of higher
frequency (e.g., ECG). In the case of the
respiration, the physio-anatomical structure of
the body induces this modulation naturally. It
is necessary to keep in mind that the ECG
is not a unique-frequency signal, but it has
frequency components along the bandwidth of
0.67-300Hz [20,21]. Without loss of generality,
y(t) is decomposed into a Fourier series and,
because the respiration activity is express
along the whole spectrum of the carrier signal,
only one component is taken (e.g., 10Hz).
Such component corresponds to a frequency
considerably higher (>10) than respiratory rate
(up to 0.8Hz). In addition, if the respiration is
assumed as a constant sinusoidal signal, then the
amplitude modulated ECG can be expressed as
follows [22]:

yeDpR(t) =AEDR cos(WEDR) (2)
yeca(t) =Agcq cos(wpcat) (3)

y(t) =Agca(l + may(t)] cos(weegt)
=Acos(wgcat) (4)

Where ygpr is the respiration signal, ypcg is
the carrier signal, y the modulated signal, m
the modulation index (Agppr/Apcc), and z,
the modulation signal [22]. The main effect of
the AM is bandwidth displacement of the low
frequency signal into the frequency wpcat. Since
our carrier signal is the ECG, then the EDR
bandwidth is extended to the same frequency
range of ECG.

Proposed algorithms ECG-Derived
Respiration based on AM (EDRAM)

Considering the AM caused by the respiration
over the ECG, it is possible to assume that the
respiratory signal is reflected not only in the
bandwidth of respiration (0.2-0.8Hz) but also
over the spectrum of the ECG. Based on this,
it is possible isolate the y and n,, components in
Eq. (1) using a 2nd order Butterworth low-pass
filter (f.=b0Hz) - to remove n; and partially
np - and a high-pass filter (f.=10Hz) - to
remove ny. Notice that the use of such filters
also removes important components of the ECG
signal. It causes that the QRS complex is no
longer present, and only a modified R-peak can
be detected.

The method for AM demodulation is the
contour detection. Because the filtered ECG
encompasses a bandwidth instead a single
frequency, only the remaining R-peaks are
usually taken as discrete samples of the
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modulation signal [6,7]. The R-peak detection
is achieved based on the stereotypical shape of
the QRS complex, where the R-peak is: a local
maximum, over a threshold and, sharply pointed
(signal falls near OV in +20ms).

Once the discrete samples are acquired, they
can be directly used for control or processing
purposes or, if a visual feedback is necessary
for patient or medical staff, a reconstruction
algorithm could be implemented. For this report,
a moving average, with a span length of the 25%
of the sampling frequency, is applied offline, in
order to generate a smooth visual representation.

Many algorithms are found in literature, but
when a multi-lead ECG is not used, an accurate
estimation of the ECG’s baseline must be done
because the EDR bandwidth overlaps with the
one of the ny [3,5,6,10]. But considering the AM
effect, it is possible to filter this noise with a
conventional 2nd order Butterworth high-pass
filter.

EDR based on Band-Pass filtering
(EDRBP)

A second algorithm is implemented with the
conventional approach, where the spectral
components of the EDR are taken directly
from the ECG signal with a Band-Pass filter
(EDRBP).

Under this basis, it is possible to assume
that a band-pass filter, with the same spectrum
of respiratory activity (0.2-0.8Hz), will almost
isolate the modulation signal (x,,) [15,16]. In this
case a FIR filter of 64th order is implemented
with a bandwidth of 0.2-0.4Hz.

The filter described above eliminates most
of the noises mentioned in Table 1, except for
partial baseline wander and white noise. The last
one can be neglected since its uniform probability
distribution make that the probability of noise
affecting the bandwidth of 0.2-0.4Hz tend to 0
because of its infinite nature.

However, the noise of the baseline wander
interferes with the respiration bandwidth. This
is shown in Fig. 1, where the output of the

filtered

ECG/ECG

Resp/ EDRPP

1 .
30 40 50 60
Time (s)

Figure 1. Results for set F2006. The upper
trace shows original ECG (solid line) and the
output of the band-pass filter (dashed line, scaled
for better viewing). The lower trace shows the
respiratory activity (solid line) and the EDR
obtained with the EDRBP (dashed line).

band-pass filter basically describes ny. A post-
processing stage, based on the derivative of the
signal, is necessary to unmask the respiratory
activity embedded on it.

Test and Comparison

For test the algorithms, the Fantasia data set
of the PhysioNet/PhysioBank is used [17,23].
This set contains ECG and respiratory (chest
belt [6]) data of young and elderly people at
rest in supine position. The data are acquired
at 250S/s [23]. A quantitative comparison is
done using the Pearson correlation coefficient
(r) to measure the level of correlation and
delay between the respiration and the computed
EDR. The delay is calculated as the wvalue
in which the correlation coefficient reach its
maximum level [24]. From the comparison, the
files F2Y10 (segment from 00:20-01:20) and
F2006 (segment from 01:00-02:00) are shown
because of their significant baseline drift [6]. The
proposed algorithms are compared with others
found in literature [6,10,25]. Specifically, the one
proposed by Arunachalam and Brown is shown
graphically, because it is developed directly for
real time implementations, uses a single-lead
ECG, employs similar algorithms to others found
in literature [9,10,25], and it is tested with freely
available databases, what allows us to make a
direct comparison.
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Figure 2. Wearable system prototype with
ECG and respiration monitoring. Connections
and processing board are removed for better
visualization.

Evaluation

In order to test the robustness of the proposed
algorithms, white noise is induced at percentage
levels of 0, 1, 10, 25, 50, 75, 90, 99 and
100% relative to the maximum ECG value.
The correlation test is used as a parameter to
measure the degradation of the performance of
each algorithm with the induction of noise. 500
iterations are used to obtain the mean value of
the correlation test, preventing in this way a false
parameter due the randomness of the induced
noise.

The viability of the algorithm to be
implemented into new developments is evaluated
with in-house measurements. For this purpose,
a ground-free ECG is developed based on the
work of Dobrev et al. [26]. The design is
selected for its simplicity and its potential
to be embedded into a wearable system. As
shown in Fig. 2, the system is mounted
into a custom-made prototype of a chest belt
sensor, with two embedded conductive-rubber
electrodes (Schuhfried Medizintechnik, Austria)
of 11 x 3.5cm each (cross-resistance of 902). No
conductive solution is applied during acquisition.
Raw data is acquired at 1kS/s with MATLABTM
(Mathworks, Inc., USA). Although, the raw data
of the device is not optimal due electromagnetic
interference and baseline wander, the data is
adequate to evaluate the EDR algorithms.

RESULTS AND DISCUSSION

The algorithms are implemented in MATLAB™
(Mathworks, Inc., USA).

R[c] Resps‘EDRBP Resps‘EDRAM

Resp/ED!

h 1
30 40 50 60
Time (s)

=F
2
=

Figure 3. Algorithm comparison for set F2006.
Original respiration signal is shown in solid
lines, and in dashed lines the results of
the methods a) EDRAM (inverted for better
viewing), b)EDRBP and c)Arunachalam’s work.

A
AT

1T T

0 10 30 -1 50 60
Time (s)

Figure 4. EDRAM filtering result. The upper
trace shows the original ECG and the lower trace
the ECG after the high-pass (10Hz) and low-pass
(50Hz) filters.

Original ECG
=
=

Filtered ECG

a)

Rcsp*‘EDR[()] l'{espx"EZDRBp Rcsp-“EDRAM

o

1 . .
10 20 30 40 50 60
Time (s)

Figure 5. Algorithm comparison for set F2Y10.
Original respiration signal is shown in solid
lines, and in dashed lines the results of
the methods a) EDRAM (inverted for better
viewing), b)EDRBP and c)Arunachalam’s work.
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Table 2. Pearson correlation coefficient |r| and delay for the sets F2006

99

The results for set F2006 are shown in Figs. 3

and F2Y10
Set Parameter EDRAM EDRBP 6]
F2006 r 0.76 0.67 0.13
(~6s/respiration) Delay 0.272s 0.212s 1.92s
F2Y10 r 0.49 0.58 0.29
(~14s/respiration) Delay 2.38s 5.24s 4.46s
08

—EDRAM

and 4. The first one shows a visual comparison ---EDRBP

of the respiration and the EDR calculated § 0.6

by the two methodologies proposed and the 2

reconstruction of the results presented in [6]. Fig. =

4 shows the results of the filtering process for g 0.4

the EDRAM method. Fig. 5 shows the visual = .

comparison for the set F2Y10. = 0l T
In both sets, the EDR signal preservation, © )

despite the implementation of high-pass filters,

is consistent with the proposed mathematical 05 30 100

approach. It confirms that typical filters can be
implemented for baseline noise removal without
losing respiratory data.

The comparison of the correlation test is
shown in Table 2, for both sets. It is shown
that both algorithms show a bigger correlation
and better synchronization (except EDRBP on
F2Y10) than other real-time algorithms [6],
although simple filters are used. EDRAM also
reaches similar correlation factors than some
offline methodologies that range between 0.66-
0.80 [10, 25].

It is important to notice that respiratory
signal is acquired with a respiration-belt[6], and
such signal is not in phase with the actual
respiration (airflow). Control measurements
done in-house, show that thoracic-belt-based
measurements are 1s (for a 3s respiratory
cycle) anticipated at the spirometer-based
measurements. Therefore, although specific
details of the sensors used are not available, it is
reasonable to assume that delay values in Table
2 may be smaller when compared with actual
respiration.

The evaluation of robustness is presented in
Fig. 6, which shows how each algorithm decreases
its efficiency when white noise is induced at
different levels.

Noise Level (% of the maximum ECG value)

0.8
—EDRAM

-=-EDRBP
0.6+

-

0.4} Sso

0
0 50 100
Noise Level (% of the maximum ECG value)

Figure 6. Robustness test. It is shown the
deterioration of the performance (Pearson
correlation factor) with the inclusion of different
levels of white noise in the original ECG. The
results are shown for the set F2006 in left and
F2Y10 in right.

The EDRAM shows significantly better results
when the original ECG is used. But, when white
noise is induced, the correlation falls because
the signal-to-noise ratio decreases rapidly. Fig.
6 gives a guideline for choosing the correct
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Figure 7. EDRAM’s implementation test in a
wearable system. The raw ECG is shown in the
upper trace. In the lower trace is shown the
respiratory activity (solid line) and the EDRAM
calculation (dashed line).

algorithm for a specific need. The EDRAM
shows stability for values of wide spectrum
noises under 15% (of the maximum ECG
value). But, for situations where wide spectrum
noise suppression can’t be guaranteed, then the
EDRBP becomes the better option.

The implementation of the algorithm into a
ground-free ECG is presented in Fig. 7. Because
of the big baseline noise levels presented by
the wearable system prototype, the EDRAM is
selected due its capabilities mentioned before.
Fig. 7 shows that the algorithm is able to deal
with high baseline and electromagnetic (50Hz)
noise.

For this evaluation the EDRBP shows
instability on when non-natural respiration and
baseline wander are present. However, this
method seems to be more efficient for real-time.
This is because it is obtained by a series of
conventional FIR filters, and it is possible to
get measurements in every sampling period. This
provides a contrast with other methods that only
obtain one sample per heartbeat.

CONCLUSIONS

A mathematical amplitude modulation approach
is presented for EDR calculation. This approach
claims that although the respiration information
is essentially conformed by a low frequency
signal; it is also contained in higher frequencies
due the AM of the ECG. This way, it is possible
to apply conventional low-order high-pass filters
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and still be able to generate an EDR signal from
the demodulation of ECG’s higher frequencies.
Two different algorithms are implemented, tested
against white noise and compared with other
methods found in literature. The EDRAM shows
a correlation factor up to 0.76 and the EDRBP
up to 0.67.

The output frequency of the EDRAM is not
controllable, since it depends on the cardiac
frequency. However, at low heart rates, the
respiration can be considered also slower, so
these are enough to detect the respiratory phase
and rate.

The EDRAM algorithm is faster than other
techniques found in literature, since the EDR
sample can be extracted directly from the
last QRS complex. This, unlike other real-time
algorithms that first use a batch of complexes
or samples to extract the baseline drift and,
after that, acquire the EDR sample [6,9].
The delay of the EDR signal in relation to
the respiration results smaller when compared
with others methods. Also, the AM approach
allows the construction of less computation-effort
algorithms with similar or better results than the
ones currently used.

The EDRAM also proof its potential
to be implemented in embedded wearable
systems. Currently, its performance in long-term
measurements (during sleep and daily activity)
is under study.

The algorithms have shown that can be
implemented to generate additional data from
actual databases. In addition, the proposed AM
perspective supports the use of both algorithms
for typical applications with high efficiency, low
computational cost and ease of implementation.
These characteristics make this technique useful
for the development of wearable systems because,
if ECG is monitored, no additional sensors are
required, which implies less instrumentation,
energy consumption and discomfort to the
patient.
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