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ABSTRACT
In this paper a new solution to micromechanical model of the cochlea developed by Neely and Kim is presented

using Lagrange’s equation. This solution has the advantage over previous methodologies to provide a mathematical
model for the displacement exercised on the outer hair cells in the organ of Corti that only depends of the mechanical
characteristics in the system and the value of the excitation frequency in the inner ear. For the evaluation of this new
model the parameters developed by Ku are used and is considers that the amplitude of the excitation frequency is
normalized. The model developed is satisfactorily compared with the impedance method and its numerical solution
proposed by Neely and Kim, the state space analysis developed by Elliot, Ku and Lineton and the physiological
measurements taken from Békésy.
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RESUMEN
En este trabajo se presenta una nueva solución utilizando la ecuación de Lagrange al modelo micromecánico de

la cóclea desarrollado por Neely y Kim. Esta solución tiene la ventaja respecto a las ya existentes de proporcionar un
modelo matemático del desplazamiento ejercido a los cilios en el órgano de Corti que sólo depende de las características
mecánicas del sistema y del valor de la frecuencia de excitación en el oído interno. Para su evaluación se utilizan los
parámetros desarrollados por Ku y se considera que la amplitud de la frecuencia de excitación está normalizada. El
modelo desarrollado se compara satisfactoriamente con el método de impedancias y su solución numérica propuesta
por Neely y Kim, el método de análisis de espacio estado desarrollado por Elliot, Ku y Lineton y con las mediciones
fisiológicas realizadas por Békésy.
Palabras clave: oído interno, cóclea, órgano de corti, cilios, ecuación de Lagrange.

INTRODUCTION

The first models of the cochlea considered the
mechanics of fluids within the scala vestibuli,
the scala media and the scala tympani to
obtain approximations of wave motion on
the basilar membrane and the displacement
on the outer hair cells generated in the
organ of Corti, the most significant works
has been developed by Peterson and Bogert
[1] from a hidrodinamical theory, Lesser and
Berkeley [2] using fluid mechanics, Zweig,
Lipes and Pierce [3] considering the response
of the cochlea as a transsmition line and
Allen [4] modeling the behavior of the fluid
within the cochlea in two dimensions. Later
Steele and Taber [5] [6] developed calculations
by the method of finite differences for
models in two dimensions of the cochlea
and impedance analysis for models in three
dimensions, a more comprehensive solution
was proposed by Neely [7] with the same
previous methodology, a detailed description
of these models and their solution using
resonance analysis have been developed by
Jiménez [8] [9]. These models show good
agreement with the observations of the
relation distance frequency along of the
basilar membrane determined experimentally
by Békésy [10], however its main disadvantage

is that not model the mechanics present in the
organ of Corti.

The solution to this problem was
developed by Neely and Kim [11], in their
model they propose a micromechanical
system with two degrees of freedom that
models the displacement of the outer hair
cells in the organ of Corti and present
mechanical parameters for the cochlear
mechanics in cats, the solution proposed to
his model uses the impedance method and
numerical solutions by Gaussian elimination.
A solution using feedback and analysis of
state space was developed by Elliott, Ku and
Lineton [12], later themselves conducted a
study of the statistics of instabilities in the
model of Neely and Kim and propose new
values for the original mechanical parameters
[13]. Analysis to the model of Neely and
Kim and its parameters for the human
cochlea were conducted by Ku [14] [15]
obtaining satisfactory results respect to the
observations made by Békésy. The studies
of cochlear micromechanics have been used
to solve problems of hearing for otoacoustic
emissions by Berlin and Bobbin [16] [17] and
recent studies have proposed solutions for the
problems of level effects, combination tones
and delay effects by Duifhuis [18].
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This paper presents a new solution to the
model of the micromechanics of the cochlea
proposed by Neely and kim using Lagrange’s
equation, the main advantage of this new
solution over existing is that it provides
a system of equations for determining the
displacement of each degree of freedom.
The physical interpretation of the sum
of both displacements is determined the
total displacement in the system where the
maximum force is generated on the outer hair
cells along the cochlea. This general solution
considers that the value of the amplitude
of the excitation force is normalized and
has complex shape, the particular solution is
given as a phasor being the real displacement
the sum of each modules. This new solution
not requires the use of recursion, numerical
analysis or feedback, being single necessary
to know the physical parameters of the mass,
stiffness and damping of the system. For
the evaluation of the model the parameters
of the human cochlea proposed by Ku are
used, the results are compared with the
obtained for the impedance method proposed
by Neely and Kim, the analysis of state
space developed by Elliott, Ku and Lineton
and the physiological measurements obtained
by Békésy, in all the experiments are used
the same set of frequencies reported in the
original papers.

MICROMECHANICS IN THE
COCHLEA

The principal element of the inner ear is the
cochlea, it is divided into three comparted:
the scala vestibuli, the scala tympani and
the scala media. The Reissner’s membrane
separates the scala vestibuli from the scala
media which is separated from the scala
tympani by the basilar membrane. The scala
vestibuli and the scala tympani are filled with
a fluid similar to extracellular fluid named
perilymph, while the scala media is filled with
a fluid with a high K+ concentration and a
low Na+ concentration named endolymph.
The transduction of sound into electrical

impulses is performed by the outer hair cells
inside the organ of Corti, this is connected on
top of the basilar membrane and the outer
hair cells are connected with the tectorial
membrane, the sounds waves are transmitted
through the oval window in the scala vestibuli
creating complementary waves on the basilar
membrane and the scala tympani. This waves
on the basilar membrane create a force on
the outer hair cells that causes a change in
the potential, this is trasmitted to auditory
nerves and from there to the brain [19] [20],
the figure 1 shows the main components of a
cross section of the cochlea and the organ of
Corti is marked within a frame.

Neely and Kim propose in his paper [11]
that the physical behavior of a partition
of the cochlea can be modeled by active
mechanics elements simulating the movement
of the basilar membrane, these elements
consider the mechanical characteristics of
mass, stiffness and damping to model the
response of the coupling between the tectorial
membrane and the reticular lamina, the force
generated in each of this elements is produced
by the wave on the basilar membrane and
allows the activation of the outer hair cells
in the organ of Corti, this gives the relation
between the general behavior of the cochlea
and the micromechanics present in the organ
of Corti.

Figure 1: Cross section of the cochlea.
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Figure 2: Micromechanical model of the cochlea.

The model developed by Neely and kim
describes the behavior of the micromechanics
in the cochlea as a system of two degrees
of freedom, the figure 2 shows the original
micromechanical model proposed by Neely
and Kim.

The first mass m1 represents a cross
section of the organ of Corti which is attached
to rigid bone by stiffness and damping
components k1 and c1, the second mass m2
represents a cross section of the tectorial
membrane which is attached to rigid bone
by k2 and c2, and both masses are coupled
by k3 and c3. Also it is considered that the
displacement in a section of the organ of Corti
can be defined in terms of the difference in
pressure of the fluid inside the cochlea Pd

and the pressure located within the outer
hair cells Pa. The existence of a gain level
gEb between the displacement of the organ
of Corti and the radial displacement of the
reticular lamina and a second gain level Et

in the movement of the tectorial membrane
are proposed. The micromechanical model
has two degrees of freedom for each position
of displacement x, in the frequency domain
the equation of motion for the first degree of

freedom given by Neely and Kim is specific
by

Pd − Pa = gZ1Eb + Z3Ec (1)

The term Ec is defined as

Ec = gEb + Et (2)

Where Z1 represents the mechanical
impedance of the organ of Corti and Z2
represents the mechanical impedance of the
tectorial membrane. The equation of motion
for the second degree of freedom is given by

0 = Z2Et − Z3Ec (3)

Where Z3 represents the coupling between
the organ of Corti and the tectorial
membrane.

SOLUTION USING LAGRANGE’S
EQUATION

This paper proposes the solution to Neely and
Kim model using Lagrange’s equation, it is
considered that the pressure of fluid within
the cochlea and the pressure generated in the
outer hair cells can be modeled by a single
force, obtaining a system of two equations for
the two degrees of freedom. First the general
Lagrange’s equation for mechanical systems
is presented, then the equations of potential
energy, kinetic energy and dissipation energy
are defined for each element of the system
obtaining two equations of motion for both
displacement, next is considers that the
external force and the displacement are in
complex form for to give solution to the
system of equations and removed the complex
terms. After the variables are factored and
the system is solved using the Cramer’s rule,
obtaining the general determinant and the
determinants for both displacement. The
solution of the system is the sum of two
equations for both displacement, next the
mathematical procedure is shown. If defined
the kinetic energy as KE, the potential energy
as PE and the dissipative energy as DP, the
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Lagrange’s equation in its fundamental form
for a mechanical system is given as follows

d

dt

∂(KE)
∂

·
xi

− ∂(KE)
∂xi

+ ∂(PE)
∂xi

+ ∂(DE)
∂

·
xi

= 0

(4)
For the system of two degrees of freedom

developed by Neely and Kim the kinetic
energy is defined by the next equation

KE = 1
2m1

·
x1

2
+ 1

2m2
·

x2
2

(5)

The potential energy is in the form

PE = 1
2k1x1

2 + 1
2k3(x1 − x2)2 + 1

2k2x2
2 (6)

And the dissipation energy is

DE = 1
2c1

·
x1

2
+ 1

2c3( ·
x1 −

·
x2)

2
+ 1

2c2
·

x2
2
(7)

Solving the terms of the Lagrange’s
equation for the first equation of motion is
obtained

d

dt

∂(KE)
∂

·
x1

= m1
··
x1 (8)

∂(KE)
∂x1

= 0 (9)

∂(PE)
∂x1

= k1x1 + k3(x1 − x2) (10)

∂(DE)
∂

·
x1

= c1
·

x1 +c3( ·
x1 −

·
x2) (11)

For simplicity the next terms are defined

kA = k1 + k3 (12)

cA = c1 + c3 (13)

Rearranging the terms and considering
the force of excitation in the system, the first

equation of motion is:

m1
··
x1 +cA

·
x1 +kAx1 − c3

·
x2 −k3x2 = F0

(14)
In similar form the terms of the

Lagrange’s equation for the second equation
of motion are obtained.

d

dt

∂(KE)
∂

·
x2

= m2
··
x2 (15)

∂(KE)
∂x2

= 0 (16)

∂(PE)
∂x2

= −k3(x2 − x1) + k2x2 (17)

∂(DE)
∂

·
x1

= −c3( ·
x1 −

·
x2) + c2

·
x2 (18)

Anew for simplicity the next terms are
defined

kB = k3 + k2 (19)

cB = c3 + c2 (20)
And the second equation of motion is

obtained

m2
··
x2 +cB

·
x2 +kBx2−c3

·
x1 −k3x1 = 0 (21)

The proposed solution considers that the
displacements and the force of excitation in
the system have complex shape

x1 = X1e
jωt (22)

x2 = X2e
jωt (23)

F0 = Fejωt (24)
It is necessary to replace the complex

terms in the equations of the system and
subsequently removing the exponential terms
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for obtaining a system of two equations.

[kA −m1ω
2 + jcAω]X1 − [k3 + jc3ω]X2 = F

(25)

− [k3 + jc3ω]X1 + [kB −m2ω
2 + jcBω]X2 = 0

(26)
The solution considers terms defined by

the Cramer’s rule, the general term is in the
form:

∆ =
∣∣∣∣∣ kA −m1ω

2 + jcAω −k3 − jc3ω
−k3 − jc3ω kB −m2ω

2 + jcBω

∣∣∣∣∣
The term for the displacement in the first

degree of freedom is thus

∆X1 =
∣∣∣∣∣ F −k3 − jc3ω

0 kB −m2ω
2 + jcBω

∣∣∣∣∣
∆X1 = F0[k3 +k2−m2ω

2 +jω(c3 +c2)] (27)

And the term for the displacement in the
second degree of freedom is

∆X2 =
∣∣∣∣∣ kA −m1ω

2 + jcAω F
−k3 − jc3ω 0

∣∣∣∣∣
∆X2 = F0[−k3 − jc3ω] (28)

The total displacement in the outer hair
cells is the sum of the real parts of the
displacements of each degree of freedom.

X = ∆X1

∆ + ∆X2

∆ (29)

EXPERIMENTS AND RESULTS

For the evaluation of the solution of
Lagrange’s equation it is compared with the
methodologies of the impedance method and
its numerical solution proposed by Neely and

Table I. Cochlear parameters by Ku.
Parameter (SI) Value

m1 4.5× 10−3

k1 1.65× 109e−279(x+0.00373)

c1 9 + 9990e−153(x+0.00373

m2 7.2× 10−4 + 2.87× 10−2x
k2 1.05× 107e−307(x+0.00373)

c2 30e−17(x+0.00373)

k3 1.5× 107e−279(x+0.00373)

c3 6.6e−59.3(x+0.00373)

Kim [11], the analysis of space state of
the cochlea developed by Elliot, Ku and
Lineton [12] [13] and the measurements
physiological made by Bekesy [10]. For
to get the relationship between the values
of frequency and distance where is the
maximum amplitude of excitation on the
outer hair cells, in the equation 29 the results
of the terms defined by the equations 27 and
28 are placed, in the resulting equation the
parameters of Ku are evaluated. The set of
parameters defined by Ku [14] [15] of mass,
damping and stiffness are shown in the Table
I.

The interval frequency of evaluation for
the equation is defined from 1 Hz to 28000
Hz with the objective of comparing the
results obtained at high frequencies of the
other models. In all experiments the value
of the magnitude of the excitation force is
considered normalized, this is because the
variation of the magnitude does not change
the position along of the cochlea where the
maximum value of amplitude is obtained,
the amplitude of the graphs is normalized
to decibels respect to a relative value of
displacement of the basilar membrane and the
horizontal axis shows the frequency interval
of evaluation logarithmically. The graphics
of the solution using Lagrange’s equation
considers the origin of the axis x as the
distance near to the apex where are the low
frequencies and at the other end the distance
to the oval window where the high frequencies
are presented. In the table 2 is presented the
comparison between the results of the new
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Figure 3. Graphics using Lagrange’s equation for
the frequencies reported by Neely.

Table II. Lagrange’s equation vs. Neely.
Neely Lagrange’s equation

Frequency Distance Distance
(Hz) (m) (m)
400 0.022872 0.023530
1600 0.016489 0.014726
6400 0.010106 0.006394
25600 0.003723 -

model using Lagrange’s equation and the
results obtained by the impedance method
and its numerical solution proposed by Neely
and Kim, exists correspondence between the
results of these two different methodologies
for the frequencies of 400 Hz, 1600 Hz
and 6400 Hz, however the solution using
Lagrange’s equation is limited to frequencies
below 18000 Hz because it is not possible to
obtain response for the frequency of 25600 Hz.

The figure 3 shows the graph obtained
using the model of Lagrange’s equation for
the corresponding frequencies of 400 Hz
(Blue), 1600 Hz (Green) and 6400 Hz(Red),
in them it is observed that the behavior
exhibited is similar to that reported by Neely
and Kim in their research.

In the table 3 is presented the comparison
with the frequencies reported in the work
of Ku using the methodology developed by
Elliot, Ku and Lineton for the frequencies of
200 Hz, 900 Hz, 3700 Hz and 16000 Hz, it

Figure 4. Graphics using Lagrange’s equation for
the frequencies reported by Ku.

Table III. Lagrange’s equation vs. Ku.
Ku Lagrange’s equation

Frequency Distance Distance
(Hz) (m) (m)
200 0.03105 0.027900
900 0.02267 0.018381
3700 0.01183 0.009427
16000 0.0055 0.000313

shows that the solution to the model of Neely
and Kim using Lagrange’s equation provides
similar results without considering the use of
feedback.

The figure 4 shows the graphs obtained
for the corresponding frequencies of 200 Hz
(Blue), 900 Hz (Green), 3700 Hz (Red) and
6400 Hz (Cyan), similarly to the previous case
there are correspondences between the graphs
obtained with the Lagrange’s equation and
those reported in the work of Ku.

Finally the table IV shows the comparison
between the values obtained by the solution
of Lagrange’s equation and the results of
the physiological measurements made by
Békésy, in this case it should be noted
the absolute agreement between both values,
which provides full validity for the new
solution presented in this paper.

In the figure 5 is shows the graphs for
the frequencies of 100 Hz (Blue), 200 Hz
(Green), 400 Hz (Red) and 800 Hz (Cyan),
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Figure 5. Graphics using Lagrange’s equation for
the frequencies reported by Békésy.

Table IV. Lagrange’s equation vs. Békésy.
Bekesy Lagrange’s equation

Frequency Distance Distance
(Hz) (m) (m)
100 0.031 0.03220
200 0.028 0.02790
400 0.024 0.02353
800 0.020 0.01913

an interesting aspect of the behavior of the
graphs is the consistent with the curves shown
in the work of Békésy. Also the previous
study of the cochlear mechanics using
resonance analysis developed by Jiménez are
also fully consistent with all the experiments
presented.

CONCLUSIONS

The solution using Lagrange’s equation to the
model of cochlear micromechanics proposed
by Neely and Kim has the advantage over
previous solutions do not require the use
of recursion, numerical analysis or feedback.
For to evaluate the proposed solution only is
required to know the values of mass, stiffness,
damping and the excitation frequency of the
micromechanical system. The variation of
the value of the amplitude of the excitation
force does not provide changes in the results
of the distance excitation system, therefore a
normalized force excitation is proposed.

The new solution using Lagrange’s
equation is satisfactory compared with the
impedance method of the cochlear behavior
and its numerical solutions by Gaussian
elimination developed by Neely and Kim
(Table II), the analysis of space state
using feedback developed by Elliot, Ku and
Lineton (Table III) and the physiological
measurements made by Békésy (Table IV)
having satisfactory results in all experiments.

The graphics of amplitude vs. frequency
obtained from the solution using Lagrange’s
equation are consistent with those
obtained by Békésy in their physiological
measurements (Figures 3, 4 and 5), the
amplitude of the envelope is a peaks closer
which moves toward the base of the cochlea
when the excitation frequency increases and
moves towards the apex when the frequency
decreases, whereby the amplitude of the
envelope is a two dimensional function
between the distance along the cochlea and
the frecuency of excitation.

A contribution of the solution using
Lagrange’s equatios regarding previous
developments is to obtain the equations
of movement for each degree of freedom
independently, however the disadvantage of
this solution is that physical system response
only is valid for frequencies below to 18000 Hz
because the mechnical parameters proposed
by Ku only consider the response of the
human ear from 20 Hz to 20,000 Hz.

The proposed solution is applicable to
the biomedical field in the positioning of
the electrodes for a cochlear implant in
the methodologies of multiple intracochlear
comparmental electrodes, system of multiple
intracochlear monopolar electrodes, multiple
intracochlea bipolar electrodes and multiple
modiolar monopolar electrodes [21], these
methods require multichannel stimulation
to excite a different set of auditory
peripheral nerves where the complex tones
are discriminated according to the positioning
of the electrodes along the cochlea.
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