GMM y LDA Aplicado a la Detección de Enfermedades Pulmonares
Resumen
El propósito de este artículo es presentar metodologías que pueden ser usadas para la valoración cuantitativa de los sonidos del pulmón, así como los indicadores de desórdenes respiratorios. En este contexto, se realizaron experimentos utilizando señales normales y anormales de la respiración (LS), las cuales fueron modeladas y evaluadas utilizando principalmente la base de datos RALE y señales de sujetos saludables y no saludables, logrando hasta un 98 % de eficiencia. En la práctica médica la evaluación de enfermedades respiratorias involucra a la auscultación, pero la aplicación de métodos de análisis cuantitativos de señales podría mejorar estas valoraciones. En particular, se sugiere una metodología de evaluación acústica basada en representaciones de vectores acústicos MFCC (Coeficientes Cepstrales en Frecuencia Mel), GMM (Modelos Mezclados Gaussianos) y LDA (Análisis Discriminante Lineal). Estas técnicas podrían asistir en un análisis más amplio, identificación y diagnóstico de desórdenes pulmonares manifestados por sonidos respiratorios peculiares tales como sibilancias, crepitancias y asma, y distinguiéndolos de los sonidos respiratorios normales.
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.