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ABSTRACT 
Glaucoma is an eye disease that gradually affects the optic nerve. Intravascular high pressure can be controlled to pre-
vent total vision loss, but early glaucoma detection is crucial. The optic disc has been a notable landmark for finding 
abnormalities in the retina. The rapid development of computer vision techniques has made it possible to analyze 
eye conditions from images enabling to help a specialist to make a diagnosis using a technique that is non-invasive 
in its initial stage through fundus images. We propose a methodology glaucoma detection using deep learning. A 
convolutional neural network (CNN) is trained to extract multiple features, to classify fundus images. The accuracy, 
sensitivity, and the area under the curve obtained using the ORIGA database are 93.22%, 94.14%, and 93.98%. The 
use of the algorithm for the automatic region of interest detection in conjunction with our CNN structure considera-
bly increases the glaucoma detecting accuracy in the ORIGA database. 
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RESUMEN 
El glaucoma es una enfermedad que afecta gradualmente al nervio óptico. La presión intravascular se puede contro-
lar para prevenir la pérdida de visión, por lo que la detección temprana del glaucoma es crucial. El disco óptico ha 
sido un punto de referencia importante para encontrar anormalidades en la retina. El rápido desarrollo de técnicas 
de visión por computadora ha hecho posible el analizar las condiciones del ojo ayudando al especialista a realizar 
un diagnóstico utilizando una técnica no invasiva en su estadio inicial en imágenes de fondo de ojo. En este artículo, 
se propone una arquitectura para la detección de glaucoma utilizando aprendizaje profundo. Una red neuronal con-
volucional (RNC) es entrenada para extraer múltiples características, para clasificar imágenes de fondo de ojo. La 
exactitud, sensibilidad, y el área bajo la curva obtenidos en la base de datos ORIGA son 93.22%, 94.14% y 93.98%. 
El uso del algoritmo para la detección automática de la región de interés, incrementa considerablemente la exacti-
tud de detección de glaucoma en la base de datos ORIGA.
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INTRODUCTION
The World Health Organization (WHO) states that 

glaucoma is the second leading cause of blindness in 
the world, only after cataracts [1]. Since there is no cure 
for glaucoma [2], it is necessary to diagnose this disease 
early to delay its development [3].

Glaucoma is characterized by optic nerve damage due 
to increased degeneration of nerve fibers [4]. Since 
symptoms appear until the disease is severe, glaucoma 
is called a silent thief of sight [5]. Typically, aqueous 
humor drains out of the eye through the trabecular 
meshwork, but when the passage is obstructed, aque-
ous humor accumulates. The increase in this fluid will 
cause pressure to grow and cause ganglion cell dam-
age [6]. However, it was found that the pressure mea-
surement was not specific or sensitive enough to be 
the only useful indicator for detecting glaucoma 
because visual impairment would occur without 
increasing pressure. Therefore, a comprehensive 
examination should also include the use of images and 
visual field tests to analyze the retina [7].

Fundus imaging is the process of obtaining a two-di-
mensional projection of the retinal tissue employing 
reflected light. Finally, the resulting 2D image contains 
the image intensity that indicates the reflected light 
amount. Color fundus imaging is used to detect disease, 
where the image has R, G, and B bands, and their inten-
sity changes highlight different parts of the retina [8]. 

Due to their non-invasiveness, fundoscopy and opti-
cal coherence tomography (OCT) has become the 
imaging methods of choice for the detection and eval-
uation of glaucoma [9]. Nevertheless, due to its cost, 
OCT is not readily available.

There are different types of glaucoma, such as 
open-angle, closed-angle, secondary, normal-tension, 
pigmentary, and congenital glaucoma [10]. Some types 
require surgical treatment [11]. The optic disc and cup, 

peripapillary atrophy, and retinal nerve fiber layer [12] 

are four structures that are considered essential for 
detecting glaucoma. Family history has also been 
shown to be genetically related to the onset of the 
disease [13].

In most cases, treatment in the early stage of the dis-
ease can prevent total vision loss in glaucoma patients 
[14], so a system that can help ophthalmologists make a 
diagnosis could increase the chances of saving peo-
ple's vision. However, designing a system that pro-
vides reliable tests for glaucoma diagnosis is a compli-
cated and stimulating task in clinical practice [15]. 

Figure 1 shows an image of the fundus in a healthy 
condition where the most important parts can be seen, 
such as the optic nerve, which is where the study of 
this work will be focused. The outer part of the optic 
nerve is called the optic disk (OD), and the smaller 
blurry inner circle is called the optic cup (OC). In the 
OD area, we can see the main arteries and veins, 
whereas the veins have a darker color than the arter-
ies. Veins usually are larger in caliber than arteries, 
having an average AVR ratio of 2:3 [17].

FIGURE 1. Image of the optic nerve [16].

The region of interest (ROI) usually is less than 11% of 
the retina's fundus image's total size. By decreasing 
the size of the image with the ROI's detection, a reduc-
tion in the computational resources used is possible 
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[18]. Both optic disc and cup segmentation are essential 
components of optic nerve segmentation and, together, 
form the basis of a glaucoma evaluation. In [19], a refer-
ence data set for evaluating the cup segmentation 
method was published. Nevertheless, it does not pro-
vide free access to the general public.

There are relatively few public data sets for glaucoma 
evaluation compared to available data sets for diabetic 
retinopathy [20] and vascular segmentation [21]. The 
ORIGA database contains 650 retinal images labeled 
by retina specialists from the Singapore Eye Research 
Institute. An extensive collection of image signs usu-
ally taken into account for the diagnosis of glaucoma 
are annotated. In the Drishti-GS dataset [22], all images 
were collected from the Madurai Aravind Eye Hospital 
of the hospital visitors with their consent. The selec-
tion of glaucoma patients is made based on the clinical 
findings during the study. The selected subjects are 
between 40 and 80 years old, and the number of males 
and females is roughly equal. Patients who choose to 
undergo routine optometry and who are not glaucoma 
represent the normal category.

Usually, the fundus image analysis with artificial 
intelligence is carried out from two approaches, 1) the 
classification at the image level and 2) the classifica-
tion at the pixel level. In image-level classification, the 
learning model is trained with images previously clas-
sified by an expert, in this case, a retina specialist. 
This classification generally contains the disease pro-
gression [23]. For example, the severity of DR is classi-
fied into five grades, and each of these grades is asso-
ciated with a number. The learning model begins to 
associate the patterns in the image to their labels. The 
second approach is the anatomical and lesion segmen-
tation, such as separating the blood vessels from the 
rest of the retina in order to measure their caliber. For 
example, in the case of Hypertensive Retinopathy, the 
vein/artery relationship plays an essential role in the 
diagnosis of the disease [24].

There are several works carried out for the detection 
of glaucoma. Both images based and pixel-based clas-
sification have been used. We will follow an image-
based classification approach in this research.

A six-layer CNN architecture was proposed by Chen et 
al. [5], where four layers are convolutional, and the final 
two are fully connected. ORIGA and SCES are used in 
this study. From the ORIGA database, 99 images were 
randomly selected for training and the remaining 551 
images for the testing, obtaining results of 0.831 for 
AUC. In a second experiment, 650 images from the 
ORIGA database are used for training, and 1676 images 
from the SCES database for the testing, the area under 
the curve obtained is 0.887.

Acharya et al. [6] proposed to use a Support Vector 
Machine for classification and the Gabor transform that 
will notice the subtle changes in the image's background. 
The database used was a private database of Kasturba 
Medical College, Manipal, India, with 510 images. 90% of 
the images were used for training, while the remaining 
10% for testing. The results obtained were 93.10% accu-
racy, 89.75% sensitivity, and a specificity of 96.20%.

Raghavendra et al. [1] proposes to perform the automatic 
recognition of glaucoma utilizing a convolutional neural 
network of 18 layers. This work consists of a standard 
CNN, with convolution layers and max-pooling, and a 
fully connected layer where classification is performed. 
Initially, 70% of the randomly selected samples are used 
for training and 30% for testing. 589 healthy images and 
837 with glaucoma of a private database were deployed. 
The process was repeated fifty times with random train-
ing and test partitions. The results obtained were 98.13% 
accuracy, 98% sensitivity, and 98.3% specificity.

Gour et al. [8] proposes an automatic glaucoma detec-
tion system using Support Vector Machine (SVM) for 
classification. Combine GIST and PHOG to extract fea-
tures in images. This technique eliminates the need for 
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image segmentation. Instead, it works with a diagnos-
tic system that makes use of characteristics such as 
texture and shape to detect the disease. This technique 
yielded an accuracy of 83.4% using the Drishti-GS1 and 
High-Resolution Fundus (HRF) databases.

Gheisari et al. [25] implement two architectures, the 
VGG16 and ResNet, concatenating LSTM blocks. To 
determine the best one, they carry out several experi-
ments varying the number of epochs and learning rate. 
The best results are achieved with the VGG16 network, 
achieving 95% sensitivity and 96% specificity.

Gómez-Valverde et al. [26] use architectures such as 
VGG19, ResNet, GoogleNet and Denet Disc. The best 
results obtained were obtained using VGG19 with 
transfer learning, obtaining 94.20 of AUC, 87.01 of 
sensitivity, and 89.01 of specificity.

Pinto et al. [27] use 5 databases adding a total of 1707 
images. They carry out the experimentation with each 
of the databases separately, but the best results were 
obtained by putting together all the available images. 
They achieve an AUC of 96.05, a specificity of 85.8 and 
a sensitivity of 93.46 using Xception architecture. 

We propose an image-based classification approach 
using a deep neural network for glaucoma diagnosis in 
fundus images in the present work. A preprocessing 
step will be carried out where the region of interest 
will be extracted, specifically the region where the 
optic disc is located. Once that region is obtained, a 
neural network is fed with the cropped images in order 
to classify if the image has or not glaucoma.

MATERIALS AND METHODS

Preprocessing
This section introduces a method to locate the retina 

optic disc, which contains the necessary features to 
diagnose glaucoma. These image areas will be the in- 

put to the neural network proposed in this work. Since 
the images' size is 3072 x 2048 pixels, it is reduced to 
four times its original size, leaving the images' dimen-
sions in 768 x 512. The input images are converted to 
grayscale. Therefore, it is reasonable to obtain a higher 
contrast of the optic disc than the original image. For 
this, the red and green channels are used, which are 
the ones that have the most significant impact on the 
optic disc. To do this, Equation 1 is applied.

𝐼𝐼𝐼𝐼𝐼𝐼!"#$ = 𝑅𝑅 ∗ 0.9 + 𝐺𝐺 ∗ 0.5 
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(1)

Where Imggray is the grayscale image, and R and G are 
the corresponding red and green channels. To deter-
mine which channels would be used, the histograms 
per channel of the image were obtained, in which it is 
determined which of them have the greatest impact on 
the contrast of the image. Conventional grayscale con-
version is obtained using the luminance coefficients in 
ITU-R BT. 601-7, which is a recommendation that spec-
ifies digital video signal encoding methods [28]. 

FIGURE 2. The histogram of the red channel is shown in a), 
the green channel in b), and the blue channel in c).

c)

a) b)
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The coefficients and channels used in our method 
were obtained by analyzing the histograms in each 
channel of the images. These histograms are shown in 
Figure 2.

The results obtained after the transformation are 
shown in Figure 3.

a) b)

FIGURE 3. The conventional transformation to grayscale 
is represented by a), and the one proposed by b).

The next step is to scroll a kernel through the image 
to divide it into different sub-images to determine 
where the optic disc is located as shown in Figure 4. 
The optic disc is the most brilliant part of the retina. 
Excess brightness can be eliminated in parts where 
the optic disc is not located.

FIGURE 4. Kernel scrolling through original image.

Because the optical disk represents approximately 
10% of the original image, the scrolling box's size, or 
kernel, was chosen to ensure that any sub-images 
would be selected. The selected size was 192 x 192 
pixels, four times smaller than the image width after 
size reduction.

Equation 2 is applied to calculate the sub-images, 
depending on the size of the scrolling box and the step 
used
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(2)

Where SubImg is the image inside the kernel, Img is 
the image after resizing, x is the kernel's horizontal 
starting point, y the vertical starting point, x0 the hor-
izontal endpoint, that is, x + 192 and y0 the vertical 
endpoint, that is, y + 192.

To reduce the processing time, the kernel step will be 
165 pixels in the horizontal direction and 150 in the 
vertical direction. With this step, we guarantee that 
the optical disc is in one of the sub-images at least 
once. Each time a new sub-image is selected, the aver-
age of all the pixels is calculated by applying Equation 
3. This average is stored, and once all the sub-images 
have been analyzed, it is located where the highest 
average is. In this way, the sub-image where the optic 
disk is predicted is chosen.
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Where promPix is the average of the pixel values, pi is 
the current pixel value, and n is the total number of pix-
els. With this new sub-image selected, the pixels' aver-
age value is taken, but now of each column and row.

FIGURE 5. A red dot represents the center 
of the image to be cropped.
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This average will give us x and y coordinates. These 
coordinates represent the new image center that will 
be cropped to obtain the ROI. An example of this can 
be found in Figure 5.

The result after cropping an image can be found in 
Figure 6.

FIGURE 6. Result after cropping the image 
and obtaining the region of interest.

The entire process explained above for the ROI detec-
tion is shown in the pseudo-code in Algorithm 1.

The preprocessing described in Algorithm 1 is applied 
to the 650 images of the ORIGA database [16] to obtain 
the ROI.  With the region of interest located, we pro-

ceed to perform normalization to the images. What is 
sought is that the values are within a smaller range, 
since the CNN’s do not perform well when the input 
numerical attributes have a very large range. The nor-
malization used (Equation 4) was the min-max [23].
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(4)

 Where valNorm is the normalized value, val is the 
current value, minimg and maximg are the minimum and 
maximum image values. The values before normaliza-
tion range from 0 to 255. After normalization, they will 
be in a range from 0 to 1.

Architecture
The images fed to the network have a size of 128 x 128 

pixels. Convolution layers, ReLU, max-pooling, and 
fully connected layers comprise the proposed neural 
network. The output of each layer is the input of 
another, thus allowing the extraction of features. Since 
it is sought to differentiate between small and local 
image characteristics, which may differentiate a per-
son's distinctive features with glaucoma, small 3x3 and 
5x5 filters are used in the network. The final two layers 
will unite these characteristics to make a classification.

The order of the layers; convolution, ReLu and 
max-pooling is used in several well-known architec-
tures, such as VGG16 [29]. The idea of using two fully 
connected layers came from the AlexNet [30] network, 
which uses 3 fully connected layers. Based on these 
two articles, an architecture is proposed.

As activation function at the output of the network, 
the sigmoidal function was used. This function was 
chosen because we are interested in a binary classifi-
cation, so it will give us a probability of which class it 
can belong to. This activation function should not be 
confused with the one used between each convolu-
tional layer. ReLU is used to add non-linearity to the 
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FIGURE 7. Overview of the proposed convolutional neural network architecture.

network and sigmoidal is used to regularize the out-
put. The first fully connected layer has 128 neurons 
and the second has 2 neurons for classification.

As a loss function, we use Binary Cross Entropy. This 
was chosen due to the fact that binary classification is 
sought. This function will give us the prediction error, 
which will indicate to the network how correct its clas-
sification, which will help the network to improve as 
they pass the epochs. To avoid overfitting, dropout 
was used, which randomly turns off neurons in each 
training period, in order to distribute the power of 
selection of characteristics to all neurons equally, in 
this way, the model to learn independent characteris-
tics. Adam was used as an optimizer, which combines 
the advantages of some others, such as the Momentum, 
maintaining the exponential moving average of the 
gradients, and the RMSprop, which maintains the 
exponential moving average, but of squared gradients.

The proposed neural network consists of fifteen lay-
ers. This number of layers was determined by experi-
mentation. We have to take into account that with a 
shallower network, the extraction of features could be 
poor and therefore increase the difficulty to identify 
the desired features. However, with a deeper architec-
ture, there is a risk of overfitting.

Convolutional layers represent high-level data fea-
tures, and combining with a fully connected layer is 
one way to learn non-linear combinations of those 
features. In the network, two completely connected 
layers are used, seeking more significant learning of 
these combinations. To choose the best learning rate, 
we carried out tests with different values, and the one 
that had a better relationship between learning rate 
and performance is the selected one. The two images 
where the optic disc was not correctly detected are 
shown in Figure 8.



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | Vol. 42 | No. 3 | SEPTEMBER - DECEMBER 202136

FIGURE 8. Unidentified optic disc.

In images that were not appropriately cropped, 
excess brightness may be noticed on the circumfer-
ence of the fundus image. For this reason, the algo-
rithm places the optic disc in that position and does 
not cut the image correctly. Of the 650 used images, 
482 are from healthy patients and 168 from glaucoma 
patients.

Training and testing
455 images were used for training and 195 for valida-

tion, that is, 70% for training and 30% for validation. 
The images were chosen at random. The algorithm 
was developed in Python and ran on a computer with 
an Intel Core i7-3160QM 2.3 GHz CPU and 8 GB of RAM. 
The training execution time was 18.5 hours. Python 3 
and TensorFlow were used. To implement the algo-
rithm, it was necessary to use the Keras, Pandas, 
Numpy and Matplotlib libraries.

To ensure the obtained results were correct, we 
implemented cross-validation. For this validation, the 
algorithm was executed ten times for a k-fold with a 
value of k = 10. Each of the executions had 50 epochs. 
The advantage that it gives our model the opportunity 
to perform multiple training-test partitions. This can 
better show how our model performs on unseen data.

RESULTS AND DISCUSSION
For evaluation of the obtained results, some metrics 

such as accuracy, sensitivity, and area under the curve 
were used:

• True-Positives (TP): The predicted value was 
positive and agreed with the true value.

• True-Negatives (TN): The predicted value was 
negative and agrees with the true value.

• False-Positives (FP): The model is classified as a 
positive class, and the true value is negative.

• False-Negatives (FN): The model is classified as a 
negative class, and the actual value is positive.

Accuracy tells us the percentage of predictions that 
were made correctly.
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The sensitivity tells us how many of the positive 
cases the model was able to predict correctly.
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The ROC-AUC is the metric that shows us a probabil-
ity curve, which is shown by sketching the range of 
true positives against the range of false positives at 
various threshold values. The results obtained with 
different learning rates without ROI are shown in 
Table 1.

TABLE 1. Performance without ROI.Tabla 1 
 

Learning rate Accuracy Sensitivity ROC-AUC 

0.01 88.72 89.42 89.71 

0.001 90.01 90.01 90.35 

0.0001 91.02 93.01 89.14 

 
Tabla 2 

 
Learning rate Accuracy Sensitivity ROC-AUC 

0.01 91.36 92.62 92.87 

0.001 92.13 93.18 92.57 

0.0001 93.03 94.02 93.56 

 
Table 3 

 
Method Performance 

Six layers CNN [5] ROC-AUC: 88.7 

Different features from 
Gabor transform (SVM) [6] 

Accuracy: 93.1 
Sensitivity: 89.75 
Specificity: 96.2 

Eighteen layers CNN [1] 
Accuracy: 98.13 
Sensitivity: 98 
Specificity: 98.3 

GIST y PHOG (SVM) [8] Accuracy: 83.4 
ROC-AUC: 88 

VGG16 + LSTM [25] Sensitivity: 95 
Specificity. 96 

VGG19 + Transfer 
learning [26] 

ROC-AUC: 94.2 
Sensitivity: 87 
Specificity: 89.01 

Xception [27] 
ROC-AUC: 96.05 
Specificity: 85.8 
Sensitivity: 93.46 

Proposed 
Accuracy: 93.03 
Sensitivity: 94.02 
ROC-AUC: 93.56 
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The results obtained with different learning rates and 
ROI are shown in Table 2.

TABLE 2. Performance with ROI.

Tabla 1 
 

Learning rate Accuracy Sensitivity ROC-AUC 

0.01 88.72 89.42 89.71 

0.001 90.01 90.01 90.35 

0.0001 91.02 93.01 89.14 
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Sensitivity: 98 
Specificity: 98.3 

GIST y PHOG (SVM) [8] Accuracy: 83.4 
ROC-AUC: 88 

VGG16 + LSTM [25] Sensitivity: 95 
Specificity. 96 

VGG19 + Transfer 
learning [26] 

ROC-AUC: 94.2 
Sensitivity: 87 
Specificity: 89.01 

Xception [27] 
ROC-AUC: 96.05 
Specificity: 85.8 
Sensitivity: 93.46 

Proposed 
Accuracy: 93.03 
Sensitivity: 94.02 
ROC-AUC: 93.56 

 

Figure 10 shows the graph obtained for ROC-AUC, 
threshold values are in intervals of 0.01.

FIGURE 9. Performance with different learning rate.

FIGURE 10. ROC-AUC.

In order to check on which part of the image the net-
work was more focused to perform the classification, it 
was decided to obtain a method of visualization of neu-
ron activations. There are several options to perform 
this task. Erhan et al. [31] propose a method that seeks to 

produce an image that shows the activation of the spe-
cific neuron we are trying to visualize. Zeiler et al. [32] 
propose a method to find the patterns of the input 
image that activate a specific neuron in a layer of a CNN. 
Dosovitskiy et al. [33] propose a method that consists of 
training a neural network that performs the steps in the 
opposite direction to the original one so that the output 
of this new network is the reconstructed image.

The method used in this work is the one proposed by 
Selvaraju et al. [34] that adopts a CAM architecture, 
which generates a class activation map that indicates 
the most used image regions. Retraining is required 
for this purpose. In Figure 11 we can visualize the 
regions in the image that have the most weight while 
making the classification in some of the images.Figura 11 
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 FIGURE 11. Class activation map display.

For the color map, the Jet configuration was used, 
which returns a color map in a three-column matrix, 
with the same number of rows as the color map of the 
original image.
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Tabla 1 
 

Learning rate Accuracy Sensitivity ROC-AUC 
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0.001 90.01 90.01 90.35 

0.0001 91.02 93.01 89.14 
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Learning rate Accuracy Sensitivity ROC-AUC 

0.01 91.36 92.62 92.87 

0.001 92.13 93.18 92.57 

0.0001 93.03 94.02 93.56 

 
Table 3 

 
Method Performance 

Six layers CNN [5] ROC-AUC: 88.7 

Different features from 
Gabor transform (SVM) [6] 

Accuracy: 93.1 
Sensitivity: 89.75 
Specificity: 96.2 

Eighteen layers CNN [1] 
Accuracy: 98.13 
Sensitivity: 98 
Specificity: 98.3 

GIST y PHOG (SVM) [8] Accuracy: 83.4 
ROC-AUC: 88 

VGG16 + LSTM [25] Sensitivity: 95 
Specificity. 96 

VGG19 + Transfer 
learning [26] 

ROC-AUC: 94.2 
Sensitivity: 87 
Specificity: 89.01 

Xception [27] 
ROC-AUC: 96.05 
Specificity: 85.8 
Sensitivity: 93.46 

Proposed 
Accuracy: 93.03 
Sensitivity: 94.02 
ROC-AUC: 93.56 

 

Each row will have different intensities between the 
color red, green, and blue.

Table 3 compares the performance of our method 
against other methods found in the literature. It out-
performs all other results in any of the displayed 
metrics.

TABLE 3. Comparison of our method 
against other methods of state-of-the-art.

CONCLUSIONS
As we stated, glaucoma is one of the principal causes 

of blindness globally. It could be vitally important to 
have a tool capable of supporting ophthalmologists to 
diagnose this condition more quickly.

The proposed method achieves excellent metrics 
with a not-so-deep neural network, achieving an accu-
racy, sensitivity, and area under the curve of 93.22, 
94.14, and 93.98, respectively. To corroborate the per-
formance of our approach, we did our analysis on the 
ORIGA database, which is public, and it is one of the 
most used databases for glaucoma analysis.

The preprocessing of the images to obtain the ROI 
also helps the algorithm be more effective. It obtains 
the region where the optical disc is located in almost 
all the images of the database used, being a method to 
use in future work.

We will further examine different alternatives to 
increase the classification performance, either by pre-
processing or modifying the network structure.

The purpose of this investigation is to get a high clas-
sification method that could be implemented for auto-
matic glaucoma detection; this would save specialists 
time and speed up the diagnostic process.

By obtaining the characteristics map, we were able 
to visualize in which part of the image the decision 
of the network has more weight. Therefore, we con-
clude that the decision is made depending on the 
disc and optical cup characteristics, as shown in the 
results.

For any reader that would like to see the implementa-
tion code, it can be provided by requesting it to the 
corresponding author.
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