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ABSTRACT
The aim of this paper is to present the development of a real-time measurement system for glucose in aqueous 
media. The proposed system incorporates two lines of research: i) design, synthesis, and implementation of a non-
enzymatic electrochemical sensor of Multi-Walled Carbon Nanotubes with Copper nanoparticles (MWCNT-Cu) and 
ii) design and implementation of a machine learning algorithm based on an Artificial Neural Network Multilayer 
Perceptron (ANN-MLP), which is embedded in an ESP32 SoC (System on Chip). From the current data that is extracted 
in real-time during the oxidation-reduction process to which an aqueous medium is subjected, it feeds the algorithm 
embedded in the ESP32 SoC to estimate the glucose value. The experimental results show that the nanostructured 
sensor improves the resolution in the amperometric response by identifying an ideal place for data collection. For 
its part, the incorporation of the algorithm based on an ANN embedded in a SoC provides a level of 97.8 % accuracy 
in the measurements. It is concluded that incorporating machine learning algorithms embedded in low-cost SoC in 
complex experimental processes improves data manipulation, increases the reliability of results, and adds portability.
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RESUMEN 
El objetivo de este artículo es presentar el desarrollo de un sistema de medición en tiempo real de glucosa en medios 
acuosos. El sistema que se implementa incorpora dos lineas de investigación: i) diseño, síntesis e implementación de 
un sensor electroquímico no enzimático de Nanotubos de Carbono de Pared Múltiple con nanopartículas de Cobre 
(NTCPM-Cu) y ii)  diseño e implementación de un algoritmo de aprendizaje automático basado en una Red Neuronal 
Perceptrón Multicapa (RN-PM), embebido en un ESP32 SoC (Sistema en Chip). Un dato de corriente que se extrae en 
tiempo real durante el proceso de oxidación-reducción a la que se somete un medio acuoso, alimenta el algoritmo 
embebido en el ESP32 para estimar el valor de glucosa. De los resultados experimentales se demuestra que el sensor 
nanoestructurado mejora la resolución en la respuesta amperométrica al identificar un lugar ideal para la toma de 
datos. Por su parte, la incorporación del algoritmo basado en una RN embebido en SoC otorga un nivel de 97.8 % de 
exactitud en la mediciones. Se concluye que incorporar algoritmos de aprendizaje automático embebidos en SoC de 
bajo costo en procesos experimentales complejos, mejora la manipulación de datos, incrementa la confiabilidad en 
resultados y adiciona portabilidad.
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INTRODUCTION
The scientific community is constantly working to 

develop highly efficient, accessible, and stable glucose 
sensors to monitor glucose levels. However, those 
based on enzymes are not very stable since, in some 
cases, they are susceptible to pH and temperature [1][2]

[3]. With the advent of nanoscience and nanotechnol-
ogy, scientists have developed and fabricated advanced 
nanostructured materials over the past two decades to 
develop glucose sensors with high sensitivity and 
selectivity [4][5]. Carbon nanotubes (CNT), metal nano-
clusters, and nanoparticles are among the nanostruc-
tured materials used. CNT and transition metal nano-
clusters have had numerous applications as sensors 
and biosensors [6]. Nanostructured carbon systems 
such as CNT, graphene, and mesoporous carbon are the 
most studied materials for glucose detection thanks to 
their different properties, such as large surface area, 
better conductivity, biocompatibility, and chemical 
stability [7][8]. For their part, smaller metal clusters have 
shown catalytic activity not exhibited by their massive 
analog or nanoparticles (NP); this generates excellent 
promise for their possible application as catalysts [9].

Additionally, several metallic clusters have been 
revealed to have tremendous and selective catalytic 
activity when deposited on suitable support [10][11]. 
Hybrids based on the combination of metal and CNT 
have been positioned as the new trend to produce a 
synergistic effect in glucose detection due to the out-
standing catalytic activity of the metal and the excep-
tional properties of carbon materials, such as the 
large surface area, exceptional electrical conductivity 
and excellent chemical resistance [12]. For example, 
copper (Cu) is one of the widely investigated metal 
catalysts, and its electrodeposition has been studied 
on various carbon nanostructures [13][14][15]. Cu-based 
nanomaterials are among the most studied nano-
structures in sensor and biosensor applications due 
to their high efficiency, low toxicity, low cost, long-
term stability, and high catalytic activity. In [16], the 
synthesis of nanostructures with different morpholo-

gies of copper oxide (CuO) for the detection of glu-
cose; however, the synthesis is complex to carry out. 
In [17], a nanocomposite formed from Cu and CNT 
(Cu-CNT) exhibits high sensitivity and stability, fast 
response with a wide linear range, a low detection 
limit, and exemplary performance detecting glucose 
in blood serum. This process is developed by synthe-
sizing carbon nanotubes grown on a Tantalum (Ta) 
substrate from chemical vapor deposition (CVD) and 
electrochemically depositing Cu nanocubes on the 
CNT using a simple cathodic potentiostatic tech-
nique. In [18], a non-enzymatic glucose sensor with 
catalytic oxidation through the electrodeposition of 
Cu nanoclusters on an electrode modified with car-
bon nanotubes solubilized with Nafion (Nf). This 
sensor is applied for glucose analysis in blood sam-
ples and provides high sensitivity and stability, fast 
response, good reproducibility, and selectivity. These 
qualities make the Cu-CNT nanocomposite-based 
electrode a promising candidate for enzyme-free glu-
cose detection.

Implementing artificial intelligence (AI) algorithms 
in systems based on nanostructured biosensors is of 
great help because it can estimate expected values 
quickly, accurately, automatically, and in real time. 
Additionally, an adequate database can train algo-
rithms to estimate particular variables. Machine 
learning can efficiently process large amounts of 
messy or low-resolution data and discriminate over-
lapping signals from each other [19]. In [20], a method 
based on using artificial intelligence algorithms to 
process the interference between the oxidation cur-
rents of insulin and glucose using cyclic voltammetry 
with a Ni(OH)2 electrode. The method allows for sep-
arating and providing insulin and glucose concentra-
tions, obtaining high precision (at the mmol level) 
and correlation, with prediction errors of 6.515 % for 
insulin and 4.36 % for glucose. In [21], an application of 
an electronic tongue formed by several electrodes 
modified with nanoparticles for the detection and 
electrochemical quantification of carbohydrates in 

72 REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA VOL. 44 | NO. 4 | SPECIAL ISSUE 2O23 



sugarcane waste samples. It uses an artificial neural 
network to process the data and predict carbohydrate 
concentrations with high precision and correlation.

This article presents the design and implementation 
of glucose measurement in real-time of a system in 
aqueous media based on machine learning algo-
rithms embedded in an ESP32 SoC. The instrument is 
made up of two main blocks: i) the electrochemical 
stage, where an oxidation-reduction process of an 
aqueous medium with glucose is carried out and ii) 
the information processing stage and the estimation 
of the glucose level, based on machine learning algo-
rithms implemented in an ESP32 SoC. The first block's 
main contribution is designing, synthesizing, and 
implementing a non-enzymatic sensor built from a 
glassy carbon electrode functionalized with MWCNT 
and copper nanoparticles. Considering that the syn-
ergy between copper nanoparticles and MWCNT 
increases the amperometric response, the resolution 
and sensitivity of the sensor are improved. The sec-
ond block estimates the level of glucose present in an 
aqueous medium. The main contribution at this stage 
is the method to estimate glucose levels in the solu-
tion. It is from current data obtained in real-time in 
the oxidation-reduction stage of the aqueous medium 
with glucose, which is fed to the embedded 
machine-learning algorithm. The embedded algo-
rithm based on an ANN with MLP architecture deter-
mines the corresponding glucose level. Therefore, the 
implemented measurement system incorporates the 
advantages of nanotechnology through a nanostruc-
tured MWCNT-Cu sensor (Multi-Walled Carbon 
Nanotubes with Copper nanoparticles), the benefits 
of AI through the training of machine learning algo-
rithms based ANN-MLP (artificial neural network 
multilayer perceptron) and the potential of digital 
electronic by the ANN-MLP algorithms, embedded in 
an ESP32 system-on-chip (SoC). The integration of 
these elements makes a robust system that estimates 
the glucose level in real-time of an aqueous medium 
in an oxidation-reduction process under cyclic vol-

tammetry. 

The article is structured as follows: The Materials and 
Methods Section presents the design, synthesis, imple-
mentation, and validation of a non-enzymatic 
MWCNT-Cu electrochemical sensor. The type of archi-
tecture of the ANN-MLP implemented is also pre-
sented, as well as the mathematical model of the 
embedded algorithm in an ESP32 SoC. Finally, the 
experimental setup is shown. In the Results and 
Discussion Section, the behavior of the nanostructured 
sensor in obtaining experimental data on glucose con-
centration in aqueous measurements using cyclic vol-
tammetry is presented. Implementing the machine 
learning algorithm is validated through two training 
processes, one for the current data set corresponding to 
the voltage level of 1.3 V and another for the voltage 
level of -0.455 V, both for different glucose concentra-
tions. Finally, the Conclusions of this work are pre-
sented.

MATERIALS AND METHODS
The first stage is the design, synthesis, implementa-

tion, and validation of a non-enzymatic glucose sensor 
manufactured with electrodeposition of Cu nanoclus-
ters on the film of a glassy carbon electrode modified 
with MWCNT solubilized with Nafion (CNT-Nf). The 
manufacturing of the sensor begins with the synthesis 
of MWCNT using the spray pyrolysis method; subse-
quently, they are functionalized, and their composi-
tion is validated by X-ray diffraction (XRD). Based on a 
glassy carbon electrode, MWCNT are added, and the 
proposed sensor is structured under Cu electrodeposi-
tion.

MWCNT Synthesis
Figure 1 shows the process used to obtain the MWCNT. 

Initially, a solution composed of 572 mg of ferrocene 
(C10H10Fe) with 26 mL of toluene (C6H5CH3) is prepared 
and subjected to an ultrasonic bath for 10 min. This 
solution is fed to a nebulizer that uses argon (Ar) as a 
purge gas. This arrangement is placed in a tubular oven 
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where the nebulization is passed through a small 
quartz tube (SiO2), bringing it to 850 oC and cooling it to 
room temperature.

FIGURE 1. MWCNT Synthesis.

FIGURE 3. a) Pristine MWCNT, b) Functionalized MWCNT.

FIGURE 2. MWCNT Functionalization.

MWCNT Functionalization
Figure 2 shows the process used to functionalize the 

MWCNT. Initially, 340 mg of MWCNT are calcined at 
400 oC for 30 min. These MWCNT are suspended in 60 
mL of 6 M hydrochloric acid (HCl), subjected to an 
ultrasonic bath for 4 h, and allowed to rest for 12 h. 
Taking 170 mg of MWCNT, they are suspended in 20 
mL of nitric acid (HNO3) with 40 mL of sulfuric acid 
(H2SO4) and subjected to an ultrasonic bath for 4 h. 
Finally, filtration is done using a vacuum pump with a 
cellulose and water (H2O) filter.

Characterization of MWCNT
The crystalline nature of MWCNT is validated by 

X-ray diffraction. Figure 3a shows the diffractograms 
of the pristine carbon nanotubes, which show the typ-
ical peaks at 26.3° and 43.7°, corresponding to the 
reflections of the graphite in (002) y (100) (Joint 

Committee of Powder Diffraction Standards (JCPDS) # 
96-101-1061) [21]. Figure 3b shows the synthesized and 
functionalized MWCNT diffractogram obtained with 
the D2 Phaser X-ray diffractometer. It is observed that 
the characteristic peaks of pristine MWCNT are also 
present (Figure 3a). It can be seen that functionalized 
MWCNT have a lower intensity than pristine nano-
tubes motivated by the formation of carboxylic groups 
on the MWCNT. A slight peak at 30° is also observed 
due to the functionalization process.

(a
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) CNT

a)

Functionalized CNT

b)

Sensor manufacturing
The proposed sensor is fabricated in two main stages: 

i) adhesion of the functionalized MWCNT on a glassy 
carbon electrode and ii) electrodeposition of Cu. Figure 
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4 shows the first stage of the proposed electrode prepa-
ration process. Initially, a glassy carbon electrode (GCE) 
is taken as a base, and its free end is polished with tita-
nium oxide TiO2. A 10-minute ultrasonic bath is applied 
in 15 mL of a solution of nitric acid (HNO3), ethanol 
(C2H6O), and double-distilled water (1:1 v/v) left to dry 
at room temperature. In parallel, 1.0 mg of functional-
ized MWCNT are dispersed in 65 µL of 0.5% Nafion 
(C7HF13O5S·C2F4). 15 µL of the MWCNT solution with 
Nafion (NTC-Nf) are taken and deposited on the pol-
ished surface of the glassy carbon electrode, allowing it 
to dry at room temperature.

FIGURE 4. Preparation of the glassy carbon electrode 
modified with MWCNT-Nf solution.

FIGURE 5. Electrodeposition of Cu on MWCNT-Nf.

FIGURE 6. Block Diagram of the main stages for the 
implementation of the ANN.

Figure 5 shows the second stage in the preparation of 
the proposed electrode. First, an electrolyte composed 
of 35.6 mg of sodium sulfate (Na2SO4) and 8 mg of cop-
per sulfate (CuSO4) dissolved in 25 mL of deionized 
water is prepared, applying a sonic bath for 10 min. The 
electrodeposition of Cu is carried out in an electro-
chemical cell connected to the CHI920C Scanning 
Electrochemical Microscope. The electrochemical cell 
comprises three electrodes immersed in the electrolyte 
prepared for this purpose. The reference electrode (RE) 
is a silver/silver chloride (Ag/AgCl) electrode, the 
counter electrode (CE) is platinum, and the working 
electrode (WE) is the glassy carbon electrode (GCE) 

with MWCNT-Nf. Cyclic voltammetry is applied with a 
potential window of between -0.6 to 0.6 V for 30 cycles 
at a scanning speed of 100 mVs-1. Under this cyclic elec-
trodeposition process, Cu nanoclusters adhere to the 
WE (MWCNT-Cu). The prepared work electrode (WE) is 
rinsed with distilled water, allowed to dry at room tem-
perature, and refrigerated.

Machine learning algorithm and embedded 
system proposed

The estimation of the glucose value is based on a 
machine learning or ANN algorithm based on the MLP 
architecture embedded in an ESP32 SoC that integrates 
a 32-bit core RISC-V microcontroller with a maximum 
clock speed of 160 MHz, programmed in Python. The 
data that feed the ANN for training and validation are 
obtained from the experimental results, to which data 
augmentation is applied by estimating the mathemati-
cal model of the sensor's behavior. The data obtained 
correlates the molar concentration and the electrical 
current obtained from the sensor. Figure 6 shows a 
block diagram of the main stages of the implementa-
tion of the ANN in the ESP32 SoC. The training of the 
ANN is carried out with the data from the experimental 
arrangement through a potentiostat. Once the MLP 
model is trained, it is optimized to obtain the weights 
required to fit the corresponding mathematical model. 
The optimized and trained algorithm is embedded in 
the ESP32 SoC.

Figure 7 shows the general architecture of the ANN-
MLP. For each of the implemented models, various 
hyperparameter values are used until the appropriate 
adjustment to the behavior of the sensor is found. Each 
model is designed with a ReLu-type activation func-
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tion and presents a sequential architecture with differ-
ent hidden layers, epochs, and learning rates.

FIGURE 7. Architecture ANN-MLP.

ALGORITHM 1. Pseudocode embedded in the ESP32 SoC.

The mathematical model used for each ANN model is 
given by Equation (1).

(1)

Where:

 
is the expected value of glucose 

concentration, 

 
is the limiting function or activation 

function, 

 
corresponds to the associated weight 

matrices in each layer, 

 is the input data vector, and 

 
is a bias convention from the processing 

node. 

 

hw(x)

fn

wn

x

bn

Algorithm 1 shows the pseudocode embedded in the 
ESP32 SoC, based on the ANN-MLP model trained in 
Python, about the mathematical model described by 

Equation 1. 
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Figure 8 shows the proposed experimental setup for 
real-time glucose measurement for aqueous media 
based on an ESP32 SoC with an embedded 
machine-learning algorithm. From the electrochemi-
cal cell where the oxidation-reduction process of the 
glucose solution is carried out, a current value is 
obtained that feeds the ESP32 SoC. The algorithm 
based on an ANN-MLP estimates the value of glucose 
in the solution.

Oxidation-Reduction 
experimental behavior 

of the MWCNT-Cu 
sensor fabricated CHI920C Scanning 

Electrochemical 
Microscope

Electrochemical cell
ESP32 SoC  and  LCD

FIGURE 8. Setup for measuring glucose in aqueous media.

FIGURE 9. MWCNT-Cu sensor in CV.

Experimental data on glucose concentration are 
obtained by cyclic voltammetry in an electrochemical 
cell connected to the CHI920C  Scanning  Electrochemical 
Microscope as is illustrated in Figure 8. In the electro-
chemical cell, three electrodes are immersed in the 
aqueous solution with a specific concentration of glu-
cose (electrolyte) prepared for this purpose: i) the 
working electrode (WE) corresponds to the MWCNT-Cu 
electrode proposed in this work, ii) the reference elec-
trode (RE) is silver/silver chloride (Ag/AgCl), and iii) 
the counter electrode (CE) of Platinum (Pt). The 
CHI920C Scanning Electrochemical Microscope sup-
plies voltage to the WE and RE electrodes and collects 
current data between the WE and CE electrodes. The 
applied voltage is 50 mVs-1 from -1.3 V to 1.3 V, in a 20 
mM alkaline solution of Sodium Hydroxide (NaOH). An 
electric current flows through the electrolyte in the 
electrochemical cell (aqueous solution with glucose) in 

response to the applied potential range. The electric 
current that flows depends on the concentration of 
glucose present and the voltage applied at the moment. 
Therefore, an electric current corresponding to each 
voltage value is generated when executing a potential 
sweep. A cyclic voltammogram (CV) is generated by 
graphing the applied voltage range and the obtained 
current (Figure 8). Therefore, each solution with a par-
ticular glucose concentration has its specific CV.  Figure 
9 shows how the CV is formed in three segments. In the 
first segment (from 0 to 1.3 V), the glucose oxidation 
process occurs from 0.4 to 1.3 V, corresponding to the 
change of oxidation state from Cu(II) to Cu(III). The 
second segment (from 1.3 to -1.3 V) is where the copper 
reduction process occurs from 1.3 to 0.23 V, corre-
sponding to the change from Cu (III) to Cu(II), the peak 
at -0.455 V corresponds to the change of Cu(II) to Cu(I), 
where glucose is reduced, allowing its concentration to 
be measured. Finally, in the third segment (from -1.3V 
to 0 V), it is reduced from Cu(I) to Cu(0) at the -1.3V 
peak, Cu(0) to Cu(I) at the peak -0.34V, and Cu(I) to 
Cu(II) at the -0.1V peak. This oxidation-reduction pro-
cess of Cu and glucose in an alkaline medium is well 
reported in [22] and [6]. Figure 9 shows the behavior of 
the MWCNT-Cu work electrode in a cyclic voltammo-
gram (CV) oxidation-reduction process of Cu and glu-
cose at 100µM in an alkaline medium, in the potential 
range from -1.3 V to 1.3 V.
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This methodology allows the same CV to have 2 
points of interest to compare and measure the glucose 
concentration in real-time, at -0.455 V and 1.3 V. 

Thus, a database is formed for each aqueous solution 
with a certain glucose concentration, with the experi-
mental voltage and current data obtained. These data-
base are used to train the machine learning algorithm 
embedded in the ESP32 Soc.

RESULTS AND DISCUSSION
Figure 10 shows the oxidation-reduction behavior of 

the MWCNT-Cu sensor fabricated for glucose measure-
ment in aqueous media. 

FIGURE 10. MWCNT-Cu sensor at different glucose 
concentrations.

Figure 10 shows results for solutions with different 
concentrations of D-glucose: 1, 5, 10, 15, 25, 50, 100, 
and 250 µM in 20 mM an alkaline medium. The curves 
are obtained in the potential range from -1.3 V to 1.3 V 
and a scanning speed of 50 mVs-1. The amount of glu-
cose in a solution is directly proportional to its oxida-
tion (amount of oxygen consumed), manifesting in an 
increase in current, as evidenced. In this case, oxida-
tion for different glucose concentrations can be 
observed within the potential range of 0.4 V to 1.3 V. 
For the voltage level of 1.3 V, a clear separation is pre-
sented between the current vs. voltage curves, for the 
different glucose concentrations, which allow us to 
distinguish up to the concentration of 250 µM; this con-

dition is attributed to the synthesized MWCNT-Cu sen-
sor. For a voltage of -0.455 V, the curves for different 
glucose concentrations are more concentrated, which 
reduces the sensitivity of glucose measurement to a 
maximum of 100 µM.

The second stage in developing and implementing a 
glucose measurement system in aqueous media is 
determining the glucose level in real time. The pro-
posed method uses current data in the oxidation-re-
duction stage of the glucose solution to feed a 
machine-learning algorithm embedded in the ESP232 
SoC. The algorithm based on an ANN-MLP finally esti-
mates the corresponding glucose level. The design of 
the algorithm and its training are developed in Python 
3.8, using various libraries for machine learning. Each 
solution with a particular glucose concentration has a 
database formed with the experimental voltage and 
current data obtained. These data used to train the 
ANN model are obtained from the experimental values 
shown in Figure 10 relative to the behavior of the 
MWCNT-Cu sensor. Two training sessions are carried 
out to validate the machine learning algorithm, one for 
the current data set corresponding to the voltage level 
of 1.3 V and another for the voltage level of -0.455 V for 
different glucose concentrations. The proposed ANN-
MLP architecture has two input layers for the two case 
training: the electric current and the molar concentra-
tion. For the voltage level of 1.3 V it comprises four 
hidden layers of 16, 20, 20, and 1 neurons and an out-
put layer corresponding to the glucose level estima-
tion, as shown in Table 1. The activation function of the 
input layer is a Relu function, the learning rate of the 
classifier is defined as a constant equal to 0.018. 

 

Input Layer Hidden Layers Output 
Layer 

Current 
Measure, 

Molar 
Concentration 

16-20-20-1 
Molar 

Concentration 
Estimated 

TABLE 1. Proposed ANN-MLP for training at 1.3 V.
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For the current data set corresponding to the 1.3 V 
voltage level, Table 2 provides hyperparameter infor-
mation for this model. 

 

 

Hyperparameters Proposed ANN-MLP 

Kernel Linear 
Optimizer Adam 

Activation Function Relu 
Error MAE 
Epoch 8500 
Degree 1 

Learning Rate 0.018 
Bias  Boolean 

TABLE 2. Hyperparameters of the proposed ANN-MLP 
model at 1.3 V.

The experimental value of glucose concentration is 
obtained by feeding the ANN-MLP algorithm trained in 
real-time with a current value obtained from the elec-
trochemical cell for a specific voltage value while per-
forming cyclic voltammetry (Figure 8). For the 1.3 V 
case, Table 3 shows the molar concentration data used 
for the first training of the proposed ANN-MLP at 1.3 V 
and the results obtained by the algorithm after train-
ing. It is observed that there is an average error of 
0.0138 between the glucose concentration and the esti-
mated value. 

 

 

 
Experimental 

currents    
			×10-7 (A) 

 
Glucose 

concentrations 
(µM) 

Glucose 
concentratio
n obtained 
with ANN-
MLP (µM) 

1.94 1 0.979088 

2.95 5 4.98703 

4.41 10 9.99455 

5.31 15 14.9987 

6.73 25 25.0102 

7.83 50 50.0158 

9.39 100 100.023 

10.0 250 250.021 

TABLE 3. Glucose concentrations at 1.3 V.

Figure 11 shows the final correlation between the pro-
posed ANN-MLP training results and the experimental 
data. It is observed that the red curve corresponding to 
the results obtained by the RN tends to fit well with the 
blue curve corresponding to the input values, which 
indicates adequate algorithm training. These results 
are obtained with a sequential architecture with four 
hidden layers of 16, 20, 20, 1, a learning rate of 0.018, 
and a ReLu-type activation function.

FIGURE 11. Input data and values estimated by the proposed 
ANN-MLP for experimental data at 1.3 V.

FIGURE 12. Error trend vs. epochs of the proposed ANN-MLP 
for experimental data at 1.3 V.

The training in the proposed ANN-MLP is adjusted for 
different epochs, and the error trend is evaluated. 
Figure 12 shows that the error tends to zero for 8500 
epochs.

The procedure is similar to estimating glucose consid-
ering the current data set corresponding to the voltage 
level of -0.455 V. The proposed ANN-MLP architecture 
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has two input layers: the electric current and the molar 
concentration. For the voltage level of -0.445 V it com-
prises four hidden layers of 12, 10, 10, and 1 neurons 
and an output layer corresponding to the glucose level 
estimation, as shown in Table 4. The activation func-
tion of the input layer is a Relu function, the learning 
rate of the classifier are defined as a constant equal to 
0.018.

 

 

 

 

Input Layer Hidden Layers Output 
Layer 

Current 
Measure, 

Molar 
Concentration 

12-10-10-1 
Molar 

Concentration 
Estimated 

TABLE 4. Proposed ANN-MLP for training at -0.445 V.

The experimental value of glucose concentration is 
obtained by feeding the proposed ANN-MLP algorithm 
trained in real-time with a current value obtained from 
the electrochemical cell for a specific voltage value 
while performing cyclic voltammetry (Figure 8). Table 
5 provides hyperparameter information for this model.

 

 

Hyperparameters Proposed ANN-MLP 

Kernel Linear 
Optimizer Adam 

Activation Function Relu 
Error MAE 
Epoch 4500 
Degree 1 

Learning Rate 0.018 
Bias  Boolean 

TABLE 5. Hyperparameters of proposed ANN-MLP model at 
-0.445 V.

For the -0.445 V case, Table 6 shows the molar concen-
tration data used for the second training of the pro-
posed ANN-MLP at -0.455 V and the results obtained 
by the algorithm after training. It is observed that there 
is an average error of 0.0341 between the glucose con-
centration and the estimated value.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Experimental 

currents    
×10-8 (A) 

 
Glucose 

concentrations 
(µM) 

Glucose 
concentratio
n obtained 
with ANN-
MLP (µM) 

-4.10 1 1.01725 

-4.64 5 5.01976 

-5.76 10 10.0197 

-6.32 15 15.0241 

-7.50 25 25.0483 

-7.90 50 50.0492 

-8.92 100 100.061 

TABLE 6. Glucose concentrations at -0.455 V.

The results for this second training are similar to the 
previous ones. Figure 13 shows the final correlation 
between the proposed ANN-MLP training results and 
the experimental data. It is observed again that the red 
curve corresponding to the results obtained by the 
ANN tends to have a good fit with the blue curve corre-
sponding to the input values, which indicates adequate 
algorithm training.

FIGURE 13. Input data and values estimated by the proposed 
ANN-MLP for experimental data at -0.455 V.

For this second training, the proposed ANN-MLP 
architecture changes to 10 hidden layers, a learning 
rate of 0.018, and the limit of the error that tends to 
zero reached its minimum value of 0.017 at 4500 
epochs, as shown in Figure 14.
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FIGURE 14. Error trend vs. epochs of the proposed ANN-MLP 
for experimental data at -0.455 V.

We can deduce the great advantage of incorporating 
machine learning algorithms into complex experimen-
tal systems from the results obtained. About Figure 10, 
to validate the machine learning algorithm, the two 
training sessions of the proposed ANN-MLP are com-
pared, one for the set of current data corresponding to 
the voltage level of 1.3 V and another for the voltage 
level of -0.455 V for different glucose concentrations. It 
is observed that for the case of the voltage at 1.3 V, the 
current data are relatively easy to identify, unlike those 
presented for the voltage level of -0.455 V. For the 
obtained data at the point -0.455 V, the algorithm auto-
matic learning is fed by two current values, one refer-
ring to the oxidation and the other to the reduction of 
glucose, eliminating the one with the lowest magni-
tude of current, because it is in the middle of the cyclic 
voltammetry. The increase in glucose presents a more 
significant negative current. On the other hand, the 
implementation acquisition and processing of the data 
at the 1.3 V point appears directly proportional to the 
positive current and the glucose concentration through 
a single current value, this being the maximum value, 
making the implementation of the algorithm more 
straightforward. The contribution of the system based 
on the training of the ANN-MLP is independent of the 
experimental conditions in which the information is 
found. Therefore, obtaining an ANN architecture 
according to the experimental system is feasible to 
facilitate manipulating information and obtaining 

results. In this experiment, an accuracy of 96.7 % is 
obtained for the model with 20 hidden layers and 97.8 
% for the model with ten hidden layers, which indi-
cates a good level of training of the proposed algo-
rithms.

CONCLUSIONS
It is concluded that it is feasible to synthesize a higher 

resolution nanostructured sensor for glucose measure-
ment in real-time in aqueous media, aided by machine 
learning algorithms. The implemented measurement 
system incorporates nanotechnology through an 
MWCNT-Cu nanostructured sensor, AI through the 
training of machine learning algorithms based on 
ANN-MLP, and digital electronics through ANN-MLP 
algorithms embedded in an ESP32 SoC . With these 
elements, a robust system that estimates the glucose 
level in real time of an aqueous medium in an oxida-
tion-reduction process under cyclic voltammetry is 
integrated. The proposed method based on the current 
obtained by cyclic voltammetry saves time in data pro-
cessing and increases its accuracy, therefore getting 
glucose concentrations more efficiently. This method-
ology allows the same CV to have two points of interest 
to compare and measure the glucose concentration in 
real-time, at -0.455V and 1.3V.  The training of the ANN 
at the 1.3 V point resulted in an accuracy of 96.7 %, and 
the model implemented at -0.455 V reached an accu-
racy of 97.8 %. However, its operating and glucose mea-
surement range was a maximum of 100 µM. For its 
part, with the data provided from the sensor at 1.3 V, it 
is possible to distinguish up to 250 µM, which validates 
the increased resolution of the synthesized sensor. 
This experimental system based on ANN-MLP training 
can consider other input variables, such as tempera-
ture or voltage scanning speed. Therefore, it is feasible 
to obtain an ANN architecture according to the experi-
mental system to facilitate the manipulation of infor-
mation and obtaining results.

From the point of view of technological development, 
future work considers optimizing the sensor proposed 
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in this work (MWCNT-Cu) without considering the 
glass carbon electrode as a base. The goal is to develop 
a more compact and high-accuracy device. From the 
point of view of basic research, it is considered to 
improve the machine learning algorithm by including 
algorithms of the Echo State Network (ESN) type, 
which is one the most used methods in machine learn-
ing to predict complex dynamics, such as chaotic time 
series [23]. Implementing these algorithms with differ-
ent topologies can help us predict the experimental 
behavior of some physical phenomenon in an experi-
mental study under other circumstances.
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