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ABSTRACT 
The objective of this research is to present a comparative analysis using various lengths of time windows (TW) during 
emotion recognition, employing machine learning techniques and the portable wireless sensing device EPOC+. In this 
study, entropy will be utilized as a feature to evaluate the performance of different classifier models across various 
TW lengths, based on a dataset of EEG signals extracted from individuals during emotional stimulation. Two types 
of analyses were conducted: between-subjects and within-subjects. Performance measures such as accuracy, area 
under the curve, and Cohen's Kappa coefficient were compared among five supervised classifier models: K-Nearest 
Neighbors (KNN), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF), and Decision Trees 
(DT). The results indicate that, in both analyses, all five models exhibit higher performance in TW ranging from 2 to 
15 seconds, with the 10 seconds TW particularly standing out for between-subjects analysis and the 5-second TW 
for within-subjects; furthermore, TW exceeding 20 seconds are not recommended. These findings provide valuable 
guidance for selecting TW in EEG signal analysis when studying emotions.
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RESUMEN 
El objetivo de esta investigación es presentar un análisis comparativo empleando diversas longitudes de ventanas de 
tiempo (VT) durante el reconocimiento de emociones, utilizando técnicas de aprendizaje automático y el dispositivo 
de sensado inalámbrico portátil EPOC+. En este estudio, se utilizará la entropía como característica para evaluar 
el rendimiento de diferentes modelos clasificadores en diferentes longitudes de VT, basándose en un conjunto de 
datos de señales EEG extraídas de individuos durante la estimulación de emociones. Se llevaron a cabo dos tipos de 
análisis: entre sujetos e intra-sujetos. Se compararon las medidas de rendimiento, tales como la exactitud, el área 
bajo la curva y el coeficiente de Cohen's Kappa, de cinco modelos clasificadores supervisados: K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), Logistic Regression (LR), Random Forest (RF) y Decision Trees (DT). Los 
resultados indican que, en ambos análisis, los cinco modelos presentan un mayor rendimiento en VT de 2 a 15 
segundos, destacándose especialmente la VT de 10 segundos para el análisis entre los sujetos y 5 segundos intra-
sujetos; además, no se recomienda utilizar VT superiores a 20 segundos. Estos hallazgos ofrecen una orientación 
valiosa para la elección de las VT en el análisis de señales EEG al estudiar las emociones.

PALABRAS CLAVE: aprendizaje automático, electroencefalograma, longitud de ventana de tiempo, reconocimiento de 
emociones
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Human emotions have an impact on day-to-day 
actions and decisions. They are important aspects of 
communication and human emotional intelligence, in 
other words, the capacity to understand and manage 
emotions is crucial for the success of personal interac-
tions[1]. There are areas of opportunity in technological 
innovation in the study of emotions, for example, 
affective computing, which has the objective of equip-
ping machines with emotional intelligence to improve 
human-computer interactions (HCI)[2]. Another area is 
human-robot interaction (HRI), which aims to make 
robots capable of interpreting and expressing emo-
tions similar to those of human beings and thereby 
modulate relevant aspects of the interaction[3]. Thus, 
the possible applications of an interface capable of 
evaluating human emotional states are numerous, 
ranging from medical diagnoses, rehabilitation pro-
cesses, and digital commerce to new teaching meth-
ods.

In HCI, non-invasive, reliable and accessible portable 
sensors play an important role in the study of emotions. 
This is because in many work environments the use of 
modern technologies has increased considerably, with 
the objective of improving the interaction between the 
user and the technologies. However, many of these 
systems impose high demands on cognitive states, 
which can lead to the arousal of a person’s negative 
emotions[4]. One of the most effective approaches to 
emotion recognition is based on the use of physiological 
signals. Among the numerous physiological signals, it 
has been reported that brain signals are found to be 
directly related with human emotions[5][6][7]. Favorable 
results have been reported when evaluating different 
classification algorithms, this during the application of 
diverse feature extraction techniques through 
electroencephalographic (EEG) signals[8][9][10].

The estimation of emotions in real-time involves 
processing a continuous stream of biosignals with the 

lowest latency possible. Research in system 
development for emotional state detection is mainly 
focused on recognition methodology[11].  On the other 
hand, the field of BCI systems using EEG signals is 
constantly evolving. For example, in[12], an algorithm 
for attention detection during mathematical reasoning 
is proposed. In addition, in[13], an analysis of EEG 
signals is performed using diverse classification 
techniques, achieving significant results in motion 
detection. Another relevant contribution is presented 
in[14], with the introduction of a new neural network 
model designed for classification with a limited amount 
of motor imagery data. In[15], a methodology based on 
EEG signals is presented to detect the level of attention 
in children, applying a multilayer perception neural 
network model. Finally, in[16], a methodology based on 
motor imagery for a BCI system is presented, using 
convolutional neural networks. These papers highlight 
the diversity of approaches in current research on 
emotional estimation and the development of BCI 
systems using brain signals.

However, segmentation plays an important role in 
achieving real-time or continuous monitoring of 
emotional states (that is to say, the selection of the time 
window), which has received little attention and 
requires further research. The majority of works 
reported utilize different time windows (TW) as inputs 
for model training[6][7]. The consequences of employing 
different TW could influence the trained model to be 
unsuitable for application in real-time emotion 
recognition because the knowledge learned from the 
model is related to the sampled features for subsequent 
detection. In addition, combining different TW in the 
same analysis would cause the trained model to be 
inconsistent due to the changing characteristics of EEG 
signals in temporal sequences[17].

In order to avoid this problem, analyses at different 
TW lengths of temporal sequences have been developed 
using EEG signals. For example, Lin et al., report in 
their research a TW of 1 second to calculate the 
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spectrogram of an EEG, in order to investigate the 
relationship between emotional states and brain 
activities, with an accuracy of 82.29 % in their model et 
al.[18]. On the other hand, Zheng et al. report a TW of 4 
seconds without overlap in order to extract combined 
EEG features with eye tracking with the objective of 
carrying out emotional recognition tasks with an 
accuracy in their model of 71.77 %[19]. Zhuang et al. 
used a TW of 5s for feature extraction and emotion 
recognition based on empirical mode decomposition 
with an accuracy of 69 % in their model[20]. It is noted 
that different TW lengths have been used in EEG signal 
processing, but the appropriate length measurement 
for the detection of emotions is not established. Ouvan 
et al. carried out a study of the size of TW with the 
experiment-level batch normalization method in 
feature processing, in their findings they report that 
the best performing TW length was 2 seconds[21]. 
Healey et al. present a study of emotions (emotion 
recognition) with windows of 60, 180 and 300 seconds, 
but they do not report the performance of each TW[22]. 
Gioreski et al. report a laboratory study for stress 
detection with TW between 30 and 360 seconds, and in 
their findings indicate the window of 300 seconds 
presents better performance[23]. However, few studies 
have examined the effect of wavelength on the 
performance of classifier models during emotion 
recognition.  

Among the most-used parameters for measuring a 
classifier model’s performance are accuracy (ACC), 
defined as the fraction of predictions that the model 
classifies correctly, the precision or positive predictive 
value (PPV) that is the percentage of correct 
classifications of the model within the predictions of 
positive emotions, completeness or sensitivity (Recall) 
which is defined as the proportion of emotions that 
were correctly identified as having a condition, true 
positive, over the total number of emotions that are 
actually positive[24]. Other research employs the Area 
Under the Curve (AUC) of Receiver Operating 
Characteristic (ROC) in order to evaluate the 

performance of classifier algorithms[5][25]. Another 
parameter used is specificity, which measures the 
number of subjects who were correctly identified as 
having a negative emotion over the total number of 
subjects who actually present a negative emotion. 
However, for balanced studies that have on average 
almost the same amount of data for all categories 
(different emotions) the performance measures are 
ACC, AUC and Cohen's Kappa coefficient[8][10][12][26][27].

Another potential drawback in the study of emotions 
arises when variables are analyzed and reported at the 
group level rather than being used to evaluate the 
emotions in an individual. This is to say, the associations 
between physiological variables and emotions found 
through a group-level analysis may not generalize the 
case for evaluating emotions in an individual, as they 
cannot be sufficiently robust to reliably assess the 
emotional state at a given time for an individual[28]. 

Therefore, there is a gap in defining the size of the TW 
that will induce the best performance from the sorting 
algorithm for recognizing emotions. Furthermore, it has 
not been clearly established if the study of data must be 
made on an individual or on a group level. Accordingly, 
the aim of this research is to evaluate classification 
performance in detecting emotions via EEG signals at 
the group and individual levels by conducting a 
systematic comparison of TW values below 30 seconds. 
The performance metrics selected for this evaluation are 
ACC, AUC and Cohen's Kappa coefficient.

This article is divided in the following structure: first, 
an Introduction is provided that establishes the 
contextual framework of the research. The second 
section addresses the Materials and Methods, detailing 
the proposed approach to conduct the study. Next, in 
the third section, the Results and Discussions are 
presented, highlighting the observations and analysis 
derived from the research. Finally, the last section 
covers the Conclusions, summarizing the key findings 
and their implications.
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MATERIALS AND METHODS

In order to carry out this study of emotion recognition, 
the data set is employed from[29]. For this data set, 
controlled experiments were designed to induce 
positive, negative, and neutral emotions from video 
clips. Participants ranged in age from 19 to 35 years 
(mean age 24.3). There were 8 women and 17 men. 

          To carry out the performance study of classification 
models with different TW the flow presented in Figure 
1 is implemented.

The dataset contains the signals of 25 subjects from 14 
electrodes of the EEG device. Every signal was broken 
down into alpha, beta, gamma and delta frequency 
bands. In this study, MATLAB 2017a libraries were 
used for the preprocessing of data, feature extraction 
and analysis of the classification algorithms. The 
workstation consists of a PC with an i7 processor, 8GB 
of RAM and 4GB of Nvidia GeForce.

Acquisition of EEG Data
The EEG sensing device used was the Emotiv EPOC+, 

which has 14 channels: AF3, F7, F3, FC5, T7, P7, O1, 
O2, P8, T8, FC6, F4, F8, AF4, plus two references: 
Common Mode Sense (CMS) and Driven Right Leg 
(DRL) in P3 and P4 (see Figure 2). This device has been 
widely used in different research related to emotions 
and the study of pathologies[30][31][32]. The data obtained 
directly from the file of every subject were the 
preprocessed theta (4-8 Hz), alpha (8-12 Hz), low beta 
(12-16 Hz), high beta (16-25 Hz) and gamma (25-45 Hz) 
band signals.

Data Segmentation
The main objective of this study was to evaluate 

and compare the performance of different classifiers 
for emotion recognition with different TW shorter 
than 30 seconds. In Table 1 the lengths of TW 
considered is presented as well as the number of 
blocks obtained. Therefore, the format of the 

FIGURE 1. The proposed framework for emotion 
classification.

features in each trial was defined as (14x5x300); 14 
representing the number of electrodes, 5 
representing the frequency bands and 300 being the 
number of features extracted from the corresponding 
trial. In total 10 different TW lengths were examined 
in order to investigate the effect on the performance 
of classifier models in the study of emotions 
employing EEG sensors at a between-subject and 
within-subject level.
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FIGURE 2. Emotiv device and electrode position system 10- 
20 modified.

separately in each analysis and the entropy is calculated 
as a characteristic. Several entropy functions exist; 
however, the Log Energy function stands out for its 
excellent performance in the analysis of EEG signals. 
This is due to its remarkable sensitivity to energy 
changes, lower susceptibility to high-frequency noise 
and rapid amplitude variations, and its ability to 
characterize the complexity associated with the sub-
bands of EEG signals[34][35]. This entropy function is 
based on the wavelet theory. There are different types 
of entropy, in this study we use Log energy. This type 
of entropy is based in wavelet theory where we assume 
a signal x=[x1 x2 x3 … xn] and a probability distribution 
function P(xi) where i is the index of the signal’s 
elements, then the entropy is defined as[36]:

Data Segmentation
The main objective of this study was to evaluate and 

compare the performance of different classifiers for 
emotion recognition with different TW shorter than 30 
seconds. In Table 1 the lengths of TW considered is 
presented as well as the number of blocks obtained. 
Therefore, the format of the features in each trial was 
defined as (14x5x300); 14 representing the number of 
electrodes, 5 representing the frequency bands and 
300 being the number of features extracted from the 
corresponding trial. In total 10 different TW lengths 
were examined in order to investigate the effect on the 
performance of classifier models in the study of 
emotions employing EEG sensors at a between-subject 
and within-subject level.

Feature Extraction
Since EEG signals are complex due to nonlinearity and 

randomness of time series data the calculation of time 
series entropy is incorporated[32][33]. The TW is modified 

TABLE 1. Details of the TW information in each trial. N 
corresponds to the number of features.

(1)

under the convention that log(0)=0. For this study the 
five frequency bands of every electrode were processed 
and the log energy entropy characteristic was extracted.

The emotional state analysis is carried out on an 
individual and group level. On the group level the 
classification models with different TW are evaluated. 
For the performance evaluation of the models on an 
individual level, statistical tests are performed to 
determine whether there is a statistically significant 
difference in classification performance between 
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different window lengths and between different 
classification algorithms.

Classification Analysis
In order to carry out the training and evaluation of the 

models, the k-fold cross-validation technique is used 
with a value of k=5, where k is number of folders into 
which the data are separated. The classifier models 
compared in this study were K-Nearest Neighbors 
(KNN), Support Vector Machine (SVM), Logistic 
Regression (LR), Decision Tree (DT) and Random Forest 
(RF). The use of supervised classifiers was chosen 
because of their ability to achieve more accurate and 
specific learning, as they are trained to establish direct 
connections between known patterns and labels. 
Moreover, these classifiers are widely used in the study 
of emotions, according to the literature[10][37][38][39][40][41]. 
For the classification analysis the Machine Learning 
Toolbox 11.1 module from Matlab was used. The 
configuration parameters for every model are listed in 
Table 2.

presented as performance metrics. The results indicate 
that, regardless of the classifier model used, the TW 
that enhance their performances are between 2 and 15 
seconds, with the 10s TWs standing out. The KNN 
model achieves the highest level of ACC, reaching 87.7 
% in the 10 seconds TW, while the DT model exhibits 
the worst performance at 62.1 % in the 20 seconds TW. 
In terms of AUC, the best-performing model is RF with 
0.93 for TW of 2 to 5 seconds, while the DT model 
shows the worst performance with 0.61 using a 20 
seconds TW. Finally, the model with the best Cohen's 
Kappa coefficient is the KNN with 0.75 in the 10 
seconds TW, and the DT model obtains the lowest 
result with 0.21 in the 30 seconds TW.

TABLE 2. Parameter configuration in the Machine Learning 
Toolbox 11.1 module

RESULTS AND DISCUSSION

Between-subject Study
The performance results for the models on the 

between-subject level are shown in Table 3. The ACC, 
AUC and Cohen's Kappa coefficient of each model are 

TABLE 3. Recognition results at the between-subject level
(ACC, AUC and Cohen's Kappa coefficient)
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model shows better performances in TW from 2 to 10 
seconds, with the 5 seconds TW being the most 
outstanding in terms of ACC, AUC, and Cohen's Kappa 
coefficient. The LR model performs better in TW from 
1 to 5 seconds, presenting its best result in the 4 
seconds TW. For the RF model, its best performance is 
found in TW from 1 to 10 seconds, although the 4 
seconds TW stands out the most. Finally, the DT model 
exhibits better performance in TW from 2 to 10 seconds, 
achieving the best result in the 5 seconds TW. 

These results demonstrate that, regardless of the 
model chosen from these five, the TW that promote 
better performance in terms of ACC, AUC, and Cohen's 
Kappa coefficient are between 2 and 15 seconds. 
Moreover, the 10-second TW appears to be the most 
suitable for this type of configuration.

The results indicate that, in general terms, the 
performance of the models tends to decrease 
significantly for TW greater than 20 seconds.

TABLE 4. Within-subject classifier performance results 
(mean of ACC, mean of AUC and mean Coheń s Kappa 

coefficient)

Within-subject Results
Emotion recognition results within subject variability 

are shown in Table 4. It is observed that the KNN model 
achieves its best performances in temporal TW ranging 
from 5 to 15 seconds, with the optimal result obtained 
in the 10 seconds TW. On the other hand, the SVM 

TABLE 5. Results of the mean difference of ACC and AUC in 
the different within-subject TW

In order to identify possible significant disparities between 
ACC and AUC values associated with different threshold 
values (TW), Friedman nonparametric statistical tests were 
performed for repeated measurements of a single factor. 
This test was chosen based on its robustness to violations 
of normality and its lower sensitivity to outliers compared 
to parametric tests, such as ANOVA. The results of these 
tests are presented in Table 5, considering a significance 
level of 0.05 for the evaluation of statistical significance.
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It is observed that in all TW, there are significant 
differences between the models. This indicates that 
not only does the length of the TW interfere with 
performance, but the chosen model also plays a role.

The Table 6 presents the results of the Friedman non-
parametric hypothesis test for multiple TW sizes and 
Wilcoxon test for the TW pairs generated by the KNN 
model.

The comparison of means of ACC of the SVM models 
for different TW is presented in Table 7. It is observed 
that the mean ACC of 20 seconds is higher than the 30 
seconds, and that there is no significant statistical 
difference between the TW of 5, 10, 15 and 20 seconds

TABLE 6. KNN model results between the ACC for different 
TWs.

When comparing the equality of the mean of ACC 
in TW of 5, 10, 15, and 20 seconds, it is not possible 
to reject the null hypothesis. In the case of testing 
the equality hypothesis between TW of 1, 2, 3, and 
4 seconds, it is also not possible to reject the 
difference. However, the TW of 5 seconds presents 
better performance than that of 3 seconds, and 
that of 20 seconds presents better performance 
than that of 30 seconds, as there is no significant 
difference between the TW of 5, 10, 15, and 20 
seconds it can be considered that these are the 
ones that present better performance in terms of 
ACC for emotion detection.

TABLE 7. Results of the SVM model between the ACC for 
different TW.

TABLE 8. Results of the LR model between the ACC for 
different TW.

Table 8 shows the results of the comparisons of the 
ACC means of the LR model between different TW. It is 
observed that TW less than or equal to 5 seconds 
present a better performance in emotion detection.

FIGURE 3. Mean AUC performance with different TW and 
classification models.

Figure 3 shows the performance results of the 
AUC averages of the five models. The best 
performing classifier is the SVM even though it 
was decreasing at 10, 15, 20 and 30 seconds TW. 
However, the RF model has the highest levels of 
AUC. The KNN model shows a growth in the AUC 
from TW 4 to 15 seconds. Finally, as the TW length 
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increases, the three classifiers tend to decrease 
their performance in terms of AUC.

CONCLUSIONS

In this study, the performance of three emotion 
classification models is evaluated, considering different 
TW sizes in data segmentation and two experimental 
setups. The first configuration involved the 
participation of 25 subjects in a between-subjects 
design. The results indicate that the window size 
significantly influences the performance of the 
classifiers. For example, the KNN model shows optimal 
results in TW sizes between 4 and 15 seconds, while 
the SVM, LR, RF and DT models excel in 4 to 10 seconds 
TW. In conclusion, for a between-subjects configuration, 
TWs of 4 to 15 seconds are recommended.

In the within-subject configuration the highest 
performance results are presented in TWs between 4 
and 15 seconds for the KNN model with an ACC 
between 83.6 % and 86.12 %, respectively. However, 
for the SVM model the TW with the highest performance 
are between 2 and 10 seconds with an average AUC of 
0.91. It is also observed that using the KNN model the 
performance results in terms of ACC and AUC do not 
differ significantly between the between-subject and 
within-subject configurations. However, for the LR and 
SVM models there is a significant difference when 
comparing the configurations: both models present 
better performance in the within-subjects 
configuration.

In general terms, it can be concluded that, in the study 
of emotions using EEG signals, regardless of the 
experimental setup or the classifier model employed, 
the TW that exhibit optimal performance in the 
classifiers, measured in terms of ACC, AUC and Cohen ś 
Kappa coefficient, are in the range of 2 to 15 seconds. 
Ultimately, it is observed that, by increasing the 
duration of the TW above 20 seconds, all three models 
experience a decrease in performance. Likewise, the 

use of TW equal to or longer than 20 seconds is not 
recommended for emotion recognition.

On the other hand, future research will focus on 
addressing the limitations identified in this study. This 
work includes: a) conducting additional analysis with a 
larger sample of participants, b) exploring a comparative 
analysis between supervised and unsupervised 
classification methods, and c) considering multiple 
features of entropy, such as Threshold Entropy and 
Shannon Entropy.
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