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ABSTRACT
Surgical instrument segmentation in images is crucial for improving precision and efficiency in surgery, but it currently 
relies on costly and labor-intensive manual annotations. An unsupervised approach is a promising solution to this 
challenge. This paper introduces a surgical instrument segmentation method using unsupervised machine learning, 
based on the K-means algorithm, to identify Regions of Interest (ROI) in images and create the image ground truth 
for neural network training. The Gamma correction adjusts image brightness and enhances the identification of areas 
containing surgical instruments. The K-means algorithm clusters similar pixels and detects ROIs despite changes in 
illumination, yielding an efficient segmentation despite variations in image illumination and obstructing objects. 
Therefore, the neural network generalizes the image features learning for instrument segmentation in different 
tasks. Experimental results using the JIGSAWS and EndoVis databases demonstrate the method's effectiveness and 
robustness, with a minimal error (0.0297) and high accuracy (0.9602). These results underscore the precision of 
surgical instrument detection and segmentation, which is crucial for automating instrument detection in surgical 
procedures without pre-labeled datasets. Furthermore, this technique could be applied in surgical applications such 
as surgeon skills assessment and robot motion planning, where precise instrument detection is indispensable.
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RESUMEN
La segmentación de instrumentos quirúrgicos en imágenes es crucial para mejorar la precisión y eficiencia en 
cirugía, pero actualmente depende de anotaciones manuales costosas y laboriosas. Un enfoque no supervisado es 
una solución prometedora para este desafío. Este artículo introduce un método de segmentación de instrumentos 
quirúrgicos utilizando aprendizaje automático no supervisado, basado en el algoritmo K-means, para identificar 
Regiones de Interés (ROI) en imágenes y crear el ground truth de las imágenes para el entrenamiento de redes 
neuronales. La corrección Gamma ajusta el brillo de la imagen y mejora la identificación de áreas que contienen 
instrumentos quirúrgicos. El algoritmo K-means agrupa píxeles similares y detecta las ROI a pesar de los cambios en 
la iluminación, logrando una segmentación eficiente a pesar de las variaciones en la iluminación de la imagen y los 
objetos obstructores. Por lo tanto, la red neuronal generaliza el aprendizaje de las características de la imagen para 
la segmentación de instrumentos en diferentes tareas. Los resultados experimentales utilizando las bases de datos 
JIGSAWS y EndoVis demuestran la efectividad y robustez del método, con un error mínimo (0.0297) y alta precisión 
(0.9602). Estos resultados subrayan la precisión en la detección y segmentación de instrumentos quirúrgicos, lo cual 
es crucial para automatizar la detección de instrumentos en procedimientos quirúrgicos sin conjuntos de datos pre-
etiquetados. Además, esta técnica podría aplicarse en aplicaciones quirúrgicas como la evaluación de habilidades del 
cirujano y la planificación de movimientos de robots, donde la detección precisa de instrumentos es indispensable. 

PALABRAS CLAVE: base de datos JIGSAWS, K-means, segmentación instrumentos quirúrgicos, segmentación no 
supervisada
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Minimally invasive surgery (MIS) represents a significant advancement in surgical procedures by reducing the com-
plexity and enhancing the success rate of surgeries. These procedures improve surgeons' control over their instru-
ments, leading to more precise operations. Additionally, MIS techniques significantly decrease patient recovery time 
and infection risks. The use of small incisions minimizes patient discomfort and faster healing. These advantages 
reduce wound exposure and its possible adverse effects, such as infections, and result in shorter hospital stays and 
quicker recoveries[1].

A critical and indispensable requirement of MIS is the accurate detection and segmentation of surgical instruments. 
This process provides essential information about the location of the instruments, allowing for better planning of 
subsequent movements and reducing the chances of harming the patient. Detecting surgical instruments in images 
during surgery is crucial, as these procedures rely on real-time video data captured during the operation. 
Furthermore, the detection of surgical instruments has applications beyond the operating room. It can be used to 
practice surgical techniques, evaluate surgeons' skills, and perform detailed analyses for improved surgery planning. 
This approach enhances the precision and safety of surgical procedures and contributes to surgeons' ongoing educa-
tion and training, ultimately leading to better patient outcomes.

The detection and segmentation of surgical instruments during MIS present several significant challenges. These 
challenges are related to different factors, including noise or image distortions caused by interference and fluctua-
tions in illumination. Such issues produce low contrast between the surgical instruments and the surrounding tis-
sues or background within the acquired images. These complexities highlight the necessity for advanced technolog-
ical solutions to ensure accurate and reliable instrument detection.

Effective segmentation of surgical instruments is crucial for several reasons[2][3]. Firstly, it produces a precise visu-
alization of the tools used during surgery, essential for enhancing the safety, precision, and efficiency of the proce-
dures[4][5]. In addition, accurate visualization aids in surgical planning and execution, benefiting doctors and patients. 
Automating the segmentation process can simplify surgical workflows, enabling more focused surgical research and 
the development of advanced systems for skill evaluation and training. Automated segmentation systems play a 
pivotal role in improving the overall surgical process. This technique developed a sophisticated training and simula-
tion environments where surgeons can improve their skills in a controlled, virtual setting before applying them in 
real-life situations. These systems enhance a surgeon's abilities, dexterity, and precision, contributing to better sur-
gical outcomes[6][7]. Moreover, integrating computer vision systems into surgical practices and training can signifi-
cantly advance the field. These technologies enable the development of new, surgery-focused innovations that 
improve surgical techniques and patient care. Implementing these technologies in the medical field enhances the 
capabilities of surgical procedures, leading to more effective treatments and better patient outcomes[8][9].

In summary, the detection and segmentation of surgical instruments in minimally invasive surgeries are critical 
components that face several technical challenges. Addressing these challenges with advanced technological solu-
tions can significantly improve surgical procedures' safety, precision, and efficiency. Automated segmentation and 
computer vision systems aid in real-time surgery and provide valuable tools for surgical training and skill develop-
ment, paving the way for future advancements in medical technology and patient care.

INTRODUCTION
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This paper introduces a novel approach for the image segmentation of surgical instruments by implement-
ing an unsupervised image segmentation algorithm. The primary objective of the proposed method is to 
accurately detect and segment suturing surgical instruments to determine their spatial location within an 
image. This method automates the generation of labels necessary for training a neural network, thereby 
addressing two critical challenges in the field. Firstly, the proposed approach eliminates the need for manual 
label generation. Instead, it utilizes the K-means algorithm to segment the image, identifying regions of 
interest (ROIs) where the suturing instruments are located. This automated label generation facilitates the 
training process for the neural network. Secondly, employing a neural network for image segmentation 
allows for the generalization of suturing instrument detection. This capability enables the trained model to 
identify and segment suturing instruments across various tasks and scenarios, not limited to a specific con-
text. This versatility is demonstrated using different scenarios from the JIGSAW and EndoVis datasets. The 
proposed method offers an efficient and effective solution for the segmentation of surgical instruments in 
images. By automating label generation and leveraging the power of neural networks, this approach enhances 
the accuracy and applicability of surgical instrument detection and segmentation across diverse surgical 
scenarios. The main contributions of this approach are:

 1. The K-means application for the detection of surgical instruments to create image labeling for the 
neural network training. This algorithm reduces errors by determining the similarity between pixels 
despite illumination changes, image distortions, noise adding, or video brightness changes.

 2. The K-means algorithm, known for its efficiency, swiftly identifies patterns and segments images into 
homogeneous regions, providing a streamlined and effective image labeling process.

 3. Automatically generated labels facilitate the neural network training process, improving the effi-
ciency and effectiveness of the segmentation process.

 4. Implementing a neural network-based segmentation approach that generalizes the detection of sutur-
ing instruments across various tasks and scenarios demonstrates versatility and robustness.

 5. The proposed method is validated using different scenarios from the JIGSAW, Endoscape and EndoVis 
datasets, showcasing its applicability and effectiveness in multiple contexts.

 6. Offering an efficient and effective solution for surgical instrument segmentation that enhances the 
accuracy and broad applicability of surgical instrument detection and segmentation across diverse sur-
gical scenarios.

The rest of the paper is divided into sections: Section 2 describes a literature review of surgical instrument 
segmentation techniques to provide a better understanding. Section 3 describes materials and the proposed 
method. Section 4 presents the experimental results. Section 5 discusses the results obtained and analyzes 
why the proposed method outperforms other approaches. Finally, Section 6 concludes this paper.

Literature review
This section describes some techniques employed for surgical instrument segmentation, providing context 

for this paper's proposed method. Most recent and representative works for image surgical instrument 
segmentation reported in the scientific literature are depicted in Table1. This literature review provides a 
better understanding of the current methods for segmenting surgical instruments into different tasks, which 
is the basis for this work.
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TABLE 1. Literature review. (Continue in the next page).

Author Description Application Efficiency Database

Attia, 
et al.[10]

It utilizes recurrent neural networks 
and long short-term memory net-
works to determine relationships 
and learn dependencies between 
neighboring pixels.

Endoscopic 
images

Accuracy = 93.3 %
IoU = 82.7 % MICCAI 2016

Papp, 
et al.[11]

In this approach, different neural 
networks (UNet, TernausNet-11, 
TernausNet-16, Linknet-34) were 
used to create a general method 
for tool segmentation. The trained 
models were compared with their 
pre-trained counterparts, and the 
results show that the pre-trained 
models have lower accuracy than 
the trained ones.

Trained with en-
doscopic images 
and tested with 

suturing surgical 
instruments.

Accuracy = 97.3 %
IoU = 70.96 %
Dice = 79.91 %

Trained with MICCAI 
2016 and tested with 

JIGSAW database.

Rahbar,
 et al.[12]

This approach employed an en-
hanced U-Net with the GridMask 
(EUGNet) data augmentation tech-
nique, designed to improve the 
performance of the proposed deep 
learning model.

Endoscopic 
images

Accuracy = 86.3 %
IoU=80.6 %

Dice = 89.5 %

da Vinci Research Kit 
(dVRK) open-source 

platform.
Videos for testing our 
algorithm from open 

sources on the Internet, 
including the U.S. Nation-

al Library of Medicine.
The binary segmentation 

EndoVis 17 dataset.

Colleoni, 
et al.[13]

This approach combines robotic instru-
ment simulation with artificial surgical 
images generated by a Cycle-GAN to 
train a U-Net model for surgical instru-
ment segmentation.

Suturing 
surgical 

instruments
IoU = 86.3%

UCL  Dataset,
MICCAI ’17 Dataset.

Robot Assisted Radical 
Prostatectomy (RARP45) 

Dataset.

Deepika, 
et al.[14]

A pretrained region-based convo-
lutional neural network (R-CNN) 
model was used. The original clas-
sification head was replaced with a 
new layer consisting of 6 outputs. 
This modified network was subse-
quently fine-tuned using our anno-
tated neurosurgical video dataset 
to enhance its performance for the 
specific task of surgical instrument 
detection.

Neurosurgery IoU = 96%
Precision = 96.7%

The dataset consists pri-
marily of 5 instruments 

which are commonly 
used in neurosurgery 

such as Suction, Bipolar 
Forceps, Straight Needle 

Holder, Straight Micro 
Scissor and Dural Tooth 

Forceps.

Leifman, 
et al.[15]

Integrate synthetic images into the 
training workflow with the help of a 
CycleGAN. Using a dataset of laparos- 
copic images paired with their boun 
ding box annotations, we automatical-
ly produce pixel-perfect segmentations 
through the application of DeepMAC. 
This technique enhances instance seg-
mentation by leveraging CenterNet.

Laparoscopic 
instruments

Dice = 89%
Accuracy = 93%

Endoscopic Vision 2015 
Instrument Segmen-
tation and Tracking 

Dataset.
EndoVis2019.
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Author Description Application Efficiency Database

Mishra, 
et al.[16]

A transfer learning is used in the 
neural network to extract the back-
ground and foreground of the ima-
ge for endoscopic instruments seg-
mentation.

Endoscopic 
instruments Accuracy = 89% Not mentioned.

Lou, 
et al.[17]

A Min-Max Similarity (MMS) ap-
proach utilizes a contrastive lear-
ning framework for dual-view 
training by employing classifiers 
and projectors.

Endoscopic 
instruments

Dice = 93%
IoU = 89%

EndoVis 17.
ART-NET.
RoboTool.

Colleoni 
and 

Stoyanov[18]

Used train deep learning models 
cycle-GAN and MUNIT frameworks 
using image-to-image translation 
techniques.

Endoscopic 
images IoU = 96% MICCAI 2015 EndoVis

Jha, 
et al.[19]

A Dual decoder attention network 
(DDANet) is implemented.

Laparoscopic 
surgeries

Dice = 87%
IoU  = 81%

Recall = 87%
Precision = 93 %
Accuracy = 98 %

Robust Medical Instru-
ment Segmentation

Allan, 
et al.[20]

Perform a position estimation of sur-
gical instruments. Surgical instru-
ments are segmented them to iden-
tify their location using silhouette 
detection and optical flow.

Laparoscopic 
surgeries

Precision = 87 %
Recall = 93 %

F1 score = 90 %
Da Vinci LND dataset

Wang, 
et al.[21]

Clustering similar pixels using the 
random forest algorithm. Subse-
quently, they perform the 3D po-
sition estimation of the surgical 
instruments by calculating their ki-
nematics.

Endoscopic 
images IoU = 82 % Not mentioned

Yu, 
et al.[22]

Segment the surgical instruments 
using convolutional neural net-
works. The neural network used 
for the segmentation task is based 
on the U-Net model, which they 
modified to obtain a feature map 
that eliminates the need to crop the 
image, focusing on the specific area 
where the surgical instruments are 
located.

Endoscopic 
images

Accuracy = 91 %
IoU = 86 %
Dice = 92 %

Robotic Instrument 
Segmentation Challenge.

TABLE 1. Literature review. (Continue in the next page).
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Author Description Application Efficiency Database

Xue 
and 

Gu[23]

Implemented a surgical instru-
ment segmentation method based 
on the MobileNetV2 neural net-
work model, in which they added 
the Atrous Spatial Pyramid Pooling 
layer to focus on spatial features of 
the image using the Convolutional 
Block Attention Module CBAM to 
improve the efficiency of the neu-
ral model.

Common 
instruments

IoU = 86 %
Accuracy = 88 %

No public dataset, the 
dataset consists in 7 
common surgical in-

struments with a data 
augmentation.

Baby, 
et al.[24]

MaskRCNN model for surgi-
cal instrument segmentation. 
In addition, they added a layer 
for their classification (bipolar 
forceps, prograsp forceps, large 
needle driver, vessel sealer/ 
suction Instrument, grasping 
retractor/ clip applier, monopo-
lar curved scissors, ultrasound 
probe).

Endoscopic 
images IoU = 72 % Robotic Instrument 

Segmentation Challenge.

Streckert, 
et al.[25]

The images were created by 
placing surgical instruments on 
a green screen where surgical 
procedures replaced the back-
ground. Additionally, to increase 
the dataset size, they used a GAN 
to generate more images of sur-
gical procedures. Subsequently, 
two neural models based on the 
SegNet network were trained for 
feature learning.

Endoscopic 
images

Dataset Endovio: 
IoU = 91 %

Synthetic dataset: 
IoU = 89 %

Robotic Instrument 
Segmentation 
Challenge.[28]

Yamada, 
et al.[26]

Employs hierarchical clustering to 
automatically detect key events and 
changes in the surgical workflow.

Surgeons prac-
tice Accuracy = 88 % Not mentioned

Zhang, 
et al.[27]

Employment of surgical tools with 
detailed textures as annotation 
samples and a WGAN-GP.

Endoscopic 
surgery IoU = 92 %

Dataset 1 and 2 are re-
corded using the STRAS 

robot

Qayyum, 
et al.[28]

The region of interest is cropped 
to reduce processing time and the 
U-Net model is applied for image 
segmentation.

Endoscopic Accuracy = 95 %
F1 score = 95 % MICCAI 2022

TABLE 1. Literature review. (Continue from previous page).
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MATERIALS AND METHODS

In this chapter, we outline the datasets, tools, and methodologies employed in the development and validation of 
our proposed algorithm for the segmentation of surgical instruments. The approach combines advanced image 
processing techniques, unsupervised learning algorithms, and neural network training to achieve accurate and 
efficient segmentation. We first describe the datasets used in the experiments, including the JIGSAWS, MICCAI 
2015 EndoVis and Endoscope databases, which provide the necessary data for training and testing. Next, we detail 
the preprocessing steps applied to the images, including brightness adjustment and binarization, which are crucial 
for enhancing the visibility and differentiation of surgical instruments. Finally, we present the segmentation 
method, focusing on the stages of approximate detection, region of interest identification, and neural network 
training.

Description of the databases used
In this section, we provide an overview of the databases utilized for developing and validating our segmentation 

algorithm. We discuss the JIGSAWS database and the MICCAI 2015 EndoVis database, highlighting their relevance 
and features.

The JIGSAWS (JHU-ISI Gesture and Skill Assessment Working Set) database[29] evaluates surgical skills in mini-
mally invasive surgery procedures at Johns Hopkins University. The presented algorithm training and validation 
used the experimental data from the freely available JIGSAWS database, which contains stereoscopic video data 
and kinematic data of the position and orientation of the tips of the da Vinci system forceps. Both data sets were 
captured by the da Vinci™ Robot API with a sampling rate of 30Hz. The test subjects included eight surgeons with 
different skill levels in robotic teleoperation: two expert surgeons with over 100 hours of experience, two interme-
diate surgeons with 10-100 hours of experience, and four novice surgeons with less than 10 hours of experience. 
The experiments requested from the surgeons involved performing surgical tasks such as suturing, needle pass-
ing, and knot tying. The videos are annotated with specific gestures, skill assessments, and sensor data from the 
da Vinci robotic system, providing detailed analysis of movements and techniques. Used to develop machine 
learning algorithms, this database facilitates automated skill assessment, surgical training with real-time feed-
back, and research to improve surgical techniques. Each video contains a total of 1794 frames, with a frame width 
of 640 pixels and a frame height of 480 pixels.

The MICCAI 2015 EndoVis database[30] is a set of high-resolution videos recorded during endoscopic surgical pro-
cedures. It was created to drive the development of advanced algorithms for detecting, segmenting, and tracking 
surgical instruments. Each video is annotated with precise labels, segmentation masks, and instrument motion 
trajectories, facilitating research in computer vision applied to surgery. This database is an essential tool for 
improving the precision and effectiveness of surgical procedures. This database contains 160 images with a size of 
640x480.

The Endoscape 2023 database[31] This dataset presents laparoscopic videos designed for surgical anatomy and 
tool segmentation, object detection, and the assessment of the Critical View of Safety during procedures. The 
dataset offers a comprehensive collection of annotated videos, providing a robust foundation for research and 
development in surgical image analysis.
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Description of the proposed method
This section outlines our segmentation method for surgical instruments. Figure 1 illustrates the comprehensive 

workflow of our proposed method, offering a detailed visual representation of the segmentation process. This 
process employs the K-means algorithm for the masks or labels generation by clustering pixels. This precise 
segmentation of surgical instruments enables their subsequent detection and localization. The real potential lies 
in the neural network. The neural network is trained to generalize the learning of the surgical instrument’s 
features. The trained model identifies the surgical instruments in videos related to different tasks, providing new 
possibilities in surgical technology, inspiring a future where surgical procedures are more accurate and efficient. 
This approach leverages advanced self-learning algorithms, ensuring accurate segmentation of surgical instruments 
for developing surgical guidance and automation systems. These advancements aim to improve surgical outcomes 
and patient safety by providing greater accuracy and efficiency in identifying and manipulating surgical 
instruments during procedures.

FIGURE 1. Unsupervised surgical instruments segmentation general diagram.

The proposed method for the segmentation of surgical instruments consists of three detailed stages:

 1. Approximate Detection of Surgical Instruments: This initial stage aims to reduce computational costs by 
focusing on specific image areas. This task is achieved through edge detection techniques, which identify and 
outline the boundaries of potential surgical instruments. Concentrating computational resources on these 
edges effectively narrows down the regions of interest, streamlining the subsequent segmentation process.

 2. Identification of Regions of Interest for image labeling: In this stage, the focus is on the areas identified in 
the previous step. The K-means clustering algorithm segments the image by grouping similar pixels. This 
segmentation process identifies specific areas where the surgical instruments are located. Once these regions 
are located, the image is binarized to create clear distinctions between the instruments and the background. 
This binarized image generates masks or labels essential for training the neural network.

 3. Neural Network Training: The final stage involves training a neural network using the masks automatically 
generated in the previous step. These masks serve as labels, providing the neural network with accurate 
examples of surgical instruments. The training focuses on generalizing feature learning, enabling the neural 
network to detect and segment surgical instruments across various tasks and scenarios. This generalization 
ensures the neural network can perform robustly in different surgical environments, enhancing its applica-
bility and reliability.
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This method ensures efficient, accurate, and adaptable segmentation of surgical instruments through edge detec-
tion for initial focus, K-means clustering for precise segmentation, and neural network training for generalized 
detection. This comprehensive approach lays the groundwork for advanced surgical guidance systems, improving 
surgical outcomes and patient safety through enhanced instrument detection and segmentation capabilities.

Approximate detection of surgical instruments
In this section, we describe the initial stage of our segmentation method for surgical instruments, focusing on 

reducing computational costs by narrowing down the areas of interest within the image. Figure 2 illustrates this 
stage, where edge detection techniques are employed to identify and outline the boundaries of potential surgical 
instruments. By concentrating computational resources on these edges, we streamline the segmentation process. 

FIGURE 2. Image frame preprocessing diagram.

The image quality is modified by increasing the brightness to enhance surgical instrument detection using the 
Gamma correction[32][33]. This adjustment is crucial for improving the precision in identifying preliminary Regions of 
Interest where surgical instruments are located. By brightening the image, the contrast between the surgical instru-
ments and the surrounding tissues is increased, making the instruments more distinguishable. This step is essential 
for accurately focusing the detection process on the relevant areas of the image. Figure 3 illustrates this image prepro-
cessing step, showing the difference in clarity and instrument visibility before and after the brightness adjustment.

FIGURE 3. Image bright adjusts with different gamma values.

Figure 3 demonstrates the effects of with different γ values on image brightness. When γ is less than one, the image 
becomes brighter, enhancing the visibility of surgical instruments. Conversely, a γ value greater than one darkens the 
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image, which can be useful in different lighting conditions. This technique provides precise control over image luminos-
ity, allowing for tailored adjustments that enhance the detection process. After gamma correction, the image is binarized 
to approximate the location of surgical instruments. Binarization converts the processed image into a binary format 
(black and white), simplifying the detection process. To automate the binarization step, the Otsu algorithm is employed[34]. 
This algorithm analyzes the grayscale histogram of the image to determine the optimal threshold value that maximizes 
the variance between the foreground (surgical instruments) and the background. By doing so, it enhances the separation 
of the instruments from the surrounding tissues, ensuring accurate detection. Figure 4 showcases how different γ values 
affect image brightness and the subsequent steps of binarization and thresholding, culminating in a more efficient and 
precise detection of surgical instruments. This method leverages the combined power of gamma correction and optimal 
thresholding to improve the overall effectiveness of the surgical instrument detection process.

Figure 4 illustrates the approximate location of surgical instruments under different brightness adjustments achieved through 
gamma correction. A gamma value less than one has been found to significantly enhance the algorithm's performance, leading 
to more efficient and accurate localization of surgical instruments.

Identification of regions of interest for image labeling
This section describes the use of unsupervised learning techniques for image segmentation, focusing on the identification of 

Regions of Interest (ROIs) in surgical images. It explains how the K-means algorithm is applied to cluster pixels with similar 
characteristics, such as color, texture, or intensity, enabling the precise detection and segmentation of surgical instruments 
within the images. This approach enhances segmentation accuracy, reducing errors and optimizing the generation of image 
labels for subsequent neural network training.

Machine learning algorithms are crucial in data analysis by constructing models that discern patterns and aid in deci-
sion-making processes[35]. These algorithms are categorized into supervised, semi-supervised, and unsupervised learning 

FIGURE 4. Image binarization with different image gamma correction.
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methods. Supervised learning utilizes labeled data to identify pattern-related features, while semi-supervised learning aug-
ments training efficiency by generating new data based on existing labels. In contrast, unsupervised learning, such as data 
clustering techniques, identifies patterns in data without relying on predefined labels. By analyzing and clustering data based 
on similarities or differences, these methods unveil diverse patterns within datasets, offering insights and uncovering hidden 
relationships crucial for tasks like image segmentation[36].

Unsupervised image segmentation identifies and analyzes patterns and features within image regions[37]. On the one hand, 
unsupervised methods do not require any label for patter recognition, such as, autosupervised neural network models, which 
used the labels that are automatically generated by an algorithm like in this proposal. On the other hand, some algorithms 
cluster similar pixels together based on shared characteristics like color, texture, or intensity, enabling the identification of 
areas requiring detailed scrutiny due to their significance within the image. In surgical instrument segmentation, Regions of 
Interest contain information regarding the precise locations of instruments. Utilizing unsupervised learning techniques facil-
itates the detection of features and patterns autonomously, enhancing the accuracy of image analysis.

This paper used the K-means (Figure 5, Figure 6) algorithm to identify ROIs and segment surgical instruments effectively 
within images to generate image labels for the neural network training. By iteratively clustering similar pixels, K-means opti-
mizes the detection of specific image areas, thereby reducing false positive errors in segmentation. Each pixel is assigned to a 
class based on its proximity to centroids, which represent characteristic points in the feature space of each class. This assign-
ment is determined by minimizing the Euclidean distance between pixels and centroids, iteratively adjusted until conver-
gence[38][39][40]. The utilization of K-means enhances the precision of surgical instrument detection and segmentation (Table 2), 
demonstrating its efficacy in improving image analysis methodologies for surgical tasks.

FIGURE 5. K-means flowchart.

FIGURE 6. Algorithm description for image labeling generation.
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In conclusion, the precise identification of Regions of Interest through unsupervised learning techniques, such 
as the K-means algorithm, lays a solid foundation for effective surgical instrument segmentation. This step is cru-
cial in generating accurate labels that are then used to train neural networks, ensuring that the system can gener-
alize and reliably identify surgical instruments across a variety of scenarios.

Neural network training for surgical instrument generalize segmentation
In this section, we delve into the process of training a neural network to achieve generalized segmentation of 

surgical instruments across various datasets. The objective is to develop a robust model that, once trained on a 
specific dataset like JIGSAWS, can accurately segment surgical instruments in different datasets without the need 
for retraining. Utilizing a Fully Convolutional Network (FCN-5) architecture, this approach leverages automatically 
generated training labels and optimized hyperparameters to enhance segmentation accuracy. The following text 
will explore the details of the training process, the effectiveness of the chosen architecture, and the overall impact 
on the efficiency and reliability of surgical instrument segmentation.

The neural network is used to segment surgical instruments in images. The primary goal is to achieve effective 
generalization, meaning that once trained on the JIGSAWS dataset, the neural network can accurately segment 
surgical instruments in other data sets, regardless of variations in the specific instruments present in those data 
sets. For this purpose, a neural network architecture based on Fully Convolutional Networks, such as the FCN-5 
model is used (Figure 7).

Image Frame Generated Segmentation Mask Ground Truth

TABLE 2. Image ground truth generation.

FIGURE 7. Fully Convolutional Networks (FCN-5) architecture.
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The FCN-5 architecture is used for these types of applications since this neural network learns specific 
image features for surgical instrument segmentation. Table 3 describes the neural network's training 
hyperparameters, including details such as learning rate, number of training epochs, and other specific 
settings that influence the network's performance and generalization ability. These hyperparameters 
are essential to optimizing the training process and ensuring that the network can effectively handle 
the diversity of surgical instrument images. The training process involves using the JIGSAWS dataset to 
train the neural network. The proposed method automatically generates the necessary labels for train-
ing, eliminating the need for manual labeling. This is achieved through the use of the K-means algo-
rithm and image binarization. The loss function used in this method is the Jaccard index, also known as 
Intersection over Union (IoU) (Equation 1). This metric evaluates the overlap between the model predic-
tion and the ground truth. The IoU is calculated by dividing the intersection area between the prediction 
and the ground truth by the area of their union. A higher IoU value indicates higher segmentation accu-
racy, meaning the model prediction matches the ground truth better.

IoU =                                                                                                                         (1)

The Intersection Area is the number of pixels that match the prediction and the ground truth. The 
Union Area, another important factor in the Jaccard index calculation, is the total number of pixels pres-
ent in both the model prediction and the ground truth. It counts shared pixels only once, which is a key 
aspect in the accuracy evaluation of the segmentation.

After training, the neural network can generalize, applying the acquired knowledge to segment surgi-
cal instruments across different datasets accurately. This capability is achieved without retraining the 
neural network for each new dataset, showcasing the method's effectiveness and efficiency in diverse 
conditions.

A key contribution of this method is its ability to automatically generate labels for training the neural 
network. This automation reduces the time of image labeling. Additionally, the training process signifi-
cantly enhances segmentation accuracy. This approach reduces the time required by eliminating the 
labor-intensive task of creating manual labels.

Moreover, the automated label generation process ensures that the neural network is exposed to vari-
ous training examples, further improving its ability to generalize across different datasets. This robust-
ness allows the network to effectively handle variations in surgical images, such as differences in light-

Hyperparameters
Optimizer Adam
Learning Rate 0.00009
Epochs 30

Area of Intersection
Area of Union

TABLE 3. Training hyperparameters
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ing, instrument types, and surgical environments. The primary advantages of this method include:

 1. The trained neural network can effectively segment surgical instruments in new datasets without 
retraining.

 2. This approach reduces the need for manual intervention, accelerates the training process, and 
enhances accuracy, making it a time-saving boon for busy professionals in the field.

 3. The approach ensures consistent and reliable results across different conditions and datasets

RESULTS AND DISCUSSION

In this section, we present a detailed evaluation of a surgical instrument segmentation algorithm, imple-
mented using Python and tested on diverse datasets, including JIGSAWS and EndoVis. We delve into the 
algorithm's performance by comparing the generated segmentation masks with manually created ground 
truth, utilizing key metrics such as the Jaccard index, accuracy, precision, recall, F1 score, and Mean Squared 
Error (MSE). The impact of varying gamma values and cluster numbers on segmentation efficiency is ana-
lyzed, and the proposed method is contrasted with existing segmentation techniques in the literature. 
Furthermore, we assess the performance of different neural networks for surgical instrument segmentation, 
balancing precision and processing time to determine the most effective approach for surgical applications.

The algorithm outlined in this paper is implemented using the Python framework and executed on hard-
ware equipped with an Intel(R) Core (TM) i7-6700 CPU @ 3.40GHz, 8 GB of RAM, and an NVIDIA GeForce 
GTX 960 GPU. The experiments were conducted using the Suring videos from the JIGSAWS dataset, 
Endoscape 2023 dataset and the MICCAI 2015 EndoVis database, which contained different videos and 
image frames.

The proposed system was assessed by comparing the generated mask in the surgical instrument segmenta-
tion and manually generated ground truth. This process involved detecting and segmenting surgical instru-
ments to analyze their accuracy and effectiveness in image localization. This assessment validated the sys-
tem's performance for surgical instrument segmentation. 

Table 4 compares the generated mask through the segmentation proposed method to the created ground 
truth. The mask derived from unsupervised segmentation demonstrates a high similarity to the ground 
truth, providing precise surgical instrument image localization through the segmentation and detection 
process. The applications of the proposed algorithm encompass different tasks, such as assessing surgeons' 
skills by estimating instrument positions, establishing parameters to alert surgeons of potential instru-
ment-organ proximity or collision risks, exploring novel surgical techniques, predicting trajectories, and 
enhancing risk mitigation during surgical procedures. 

In order to determine the optimal value of gamma and optimize the number of clusters for efficient segmen-
tation, a quantitative set of metrics to evaluate the system's performance are employed. These metrics 
include the Jaccard index (Intersection over Union), accuracy, precision, F1 score, Mean Squared Error (MSE), 
and Recall.
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The Jaccard index (Equation 1) is a widely used metric for evaluating the performance of image segmentation and 
object detection algorithms. It quantifies the overlap detected pixels between the predicted segmentation and the 
ground truth, with values ranging from 0 to 1. A Jaccard index of 0 indicates no overlap between the regions, while 
a value of 1 signifies complete overlap. Thus, a higher Jaccard index indicates a better alignment between the pre-
dicted and ground truth regions. This metric is particularly valuable in image segmentation tasks, where the pri-
mary objective is to assess the accuracy of the predicted regions relative to the actual regions.

The Accuracy is used in classification problems to evaluate the performance of a model. It is defined as the pro-
portion of correct predictions about the total predictions made by the model (Equation 2). Accuracy measures how 
well a model correctly classifies instances. 

Image Frame Generated Seg-
mentation Mask Ground Truth Image Frame Generated Seg-

mentation Mask Ground Truth

TABLE 4. Comparison among original JIGSAWS’s image frame, generated segmentation mask and ground truth. 

Correct pixels prediction
Total predictions

acc =                                                                                                     (2)

Precision evaluates the pixels segmentation related to the ROI and it is compared to the ground truth. The image seg-
mentation precision can be defined as the proportion of pixels correctly classified as part of the region of interest (true 
positives) relative to the total pixels classified as part of that region (true positives plus false positives) Equation 3.
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where true positives (TP) are the pixels correctly classified and false positives (FP) are pixels incorrectly classified. 
Recall measures the correct pixels of the class of interest concerning the total pixels of that class (Equation 4).

where false negatives (FN) are the relevant pixels, the model has not identified as part of the region of interest. A 
high recall indicates that the model can effectively identify the most relevant pixels. The F1 Score evaluates the 
segmentation performance (Equation 5). It provides a balance between precision and recall.

The Mean Squared Error (MSE) compares the ground truth with the values obtained by segmentation and 
measures the errors (Equation 6).

where  yi is the ground truth pixel value and  yi is the predicted value.

precision =                                                                                  (3)Tp
Tp + Fp

recall =                                                                                    (4)Tp
Tp + Fn

2(Precision x Recall)
Precision + Recall

F1 =                                                                                                (5)

MSE =                                                                                          (6)∑( yi - yi)21
n

̂

̂

TABLE 5. Surgical instrument segmentation efficiency applying different γ and clusters values.

γ = 0.5 γ = 1.5
N = 5 N = 15 N = 25 N = 50 N = 150 N = 5 N = 15 N = 25 N = 50 N = 150

IoU 0.964 0.965 0.965 0.910 0.910 IoU 0.962 0.795 0.798 0.943 0.943

Acc 0.968 0.970 0.970 0.915 0.915 Acc 0.794 0.824 0.824 0.950 0.951

MSE 0.031 0.002 0.029 0.084 0.084 MSE 0.205 0.178 0.175 0.049 0.048

F1 score 0.933 0.935 0.935 0.746 0.746 F1 score 0.721 0.749 0.751 0.902 0.902

Preci-
sion 0.937 0.939 0.939 0.909 0.909 Preci-

sion 0.710 0.730 0.731 0.886 0.887

Recall 0.935 0.936 0.936 0.706 0.706 Recall 0.869 0.886 0.887 0.924 0.925

Table 5 and Figure 8 presents the system's surgical instruments segmentation performance with different gamma 
values, which adjust the image brightness. These experiments indicate that increasing image brightness improves 
the efficiency of segmentation and detection of surgical instruments. Furthermore, the image segmentation with 
different number of clusters is presented where the segmentation process is improved; however, this increase in 
efficiency comes with an increase in processing time. It is important to note that if the value of γ exceeds 1, the 
efficiency of image segmentation decreases. This effect is because a gamma value greater than one makes the 
image darker, making accurate identification of surgical instruments complex due to lower visibility and contrast 
in the resulting images.
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FIGURE 8. Surgical instruments segmentation efficiency. (Continue in the next page).
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FIGURE 8. Surgical instruments segmentation efficiency. (Continue from previous page).
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The results indicate that brightness is a key factor in image segmentation. A lower γ, more robust and accurate 
segmentation is achieved when a moderate number of clusters is used (N ≤ 25). Specifically, the IoU and accuracy 
remain high up to several clusters of N = 25, decreasing from N = 50. The decrease in efficiency is because several 
regions of interest are generated, generating errors when binarizing the image and leading to the segmentation of 
surgical instruments where the error increases and the processing time increases. On the other hand, with a higher 
γ, a different behavior is observed. The initial precision is low with a small number of clusters (N ≤ 25), but it 
improves significantly as the number of clusters increases, reaching optimal values from N = 50 because the algo-
rithm allows for better detection of image details by dividing it into regions of interest.

Figure 9 demonstrates a correlation between the processing time and the number of clusters employed. The process-
ing time increases if the number of clusters for image segmentation increases. Hence, it is necessary to balance pro-
cessing time and desired efficiency. By optimizing this balance, we can ensure the system's efficient performance, 
delivering accurate results without sacrificing time efficiency. Upon analyzing the results with different gamma val-
ues and the number of clusters from extracted frames, we determined that the optimal gamma value is 0.5, coupled 
with a cluster count of 5 for pixel clusters. This configuration effectively provides a balance between precise surgical 
instrument identification, processing time, and segmentation efficiency, ensuring optimal system performance.

a) b)

FIGURE 9. Processing time with different number of clusters.

Dataset Attack IoU Attack IoU Attack IoU

JIGSAWS

Salt and pepper noise 
adding 0.001 0.8570 Salt and pepper noise 

adding 0.005 0.8550 Salt and pepper noise 
adding 0.05 0.7963

JPEG compression qua- 
lity factor = 90 0.8528 JPEG compression qua- 

lity factor = 70 0.7792 JPEG compression 
quality factor = 50 0.7524

Median filter kernel = 
3 x 3 0.9592 Gaussian filter kernel = 

3 x 3 0.9581 Blurring kernel = 3 x 3 0.9593

Median filter kernel = 
7 x 7 0.9435 Gaussian filter kernel = 

7 x7 0.9546 Blurring kernel = 7 x 7 0.9498

TABLE 6. JIGSAWS instrument segmentation for tampered images.
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Tables 6-8 present the results of surgical instrument segmentation under various image processing distortions 
using three different datasets: JIGSAWS, Endovis, and Endoscape 2023. The segmentation's performance is evalu-
ated using the Intersection over Union (IoU) metric, which measures the overlap between the predicted and 
ground-truth segmentation masks. Table 6 shows the segmentation performance on the JIGSAWS dataset under 
different types of image processing attacks where adding different levels of salt and pepper noise slightly decreases 
the IoU as the noise level increases, with the highest IoU (0.8570) at 0.001 and the lowest (0.7963) at 0.05. On the 
other hand, the IoU decreases when the image is distorted with JPEG compression. For instance, the IoU drops 
from 0.8528 at a quality factor of 90 to 0.7524 at a quality factor of 50, indicating that higher compression signifi-
cantly degrades segmentation performance. Also, the application of different filters (median, Gaussian, and blur-
ring) with different kernel sizes (3x3 and 7x7) shows that the segmentation is quite robust to these distortions, 
maintaining high IoU values, particularly with a 3x3 kernel size where the IoU remains above 0.9580.

Table 7 presents the results for the Endovis dataset. Like the JIGSAWS dataset, segmentation performance slightly 
decreases with increased noise levels. The performance against JPEG compression shows a noticeable drop in IoU 
with higher compression (lower quality factors), from 0.7898 with a quality factor of 90 down to 0.7504 at 50. The 
results against image filtering indicate that the IoU values are lower than the JIGSAWS dataset. 

Finally, Table 8 shows the performance of the Endoscope 2023 dataset; the IoU slightly improves against salt and 
pepper noise adding, reaching the highest IoU of 0.8657. However, at the highest noise level (0.05), the IoU slightly 
decreases to 0.8653. Like the other datasets, the IoU decreases as the JPEG compression quality factor is reduced. 

Dataset Attack IoU Attack IoU Attack IoU

Endovis 
dataset

Salt and pepper noise 
adding 0.001 0.8537 Salt and pepper noise 

adding 0.005 0.8535 Salt and pepper noise 
adding 0.05 0.8403

JPEG compression qua- 
lity factor = 90 0.7898 JPEG compression qua- 

lity factor = 70 0.7772 JPEG compression 
quality factor = 50 0.7504

Median filter kernel = 
3 x 3 0.7532 Gaussian filter kernel = 

3 x 3 0.8062 Blurring kernel = 3 x 3 0.8021

Median filter kernel = 
7 x 7 0.7435 Gaussian filter kernel = 

7 x7 0.8007 Blurring kernel = 7 x 7 0.7954

TABLE 7. Endovis dataset instrument segmentation for tampered images.

TABLE 8. Endoscape dataset instrument segmentation for tampered images.

Dataset Attack IoU Attack IoU Attack IoU

Endos-
cape 
2023

Salt and pepper noise 
adding 0.001 0.8510 Salt and pepper noise 

adding 0.005 0.8657 Salt and pepper noise 
adding 0.05 0.8653

JPEG compression qua- 
lity factor = 90 0.8718 JPEG compression qua- 

lity factor = 70 0.8185 JPEG compression 
quality factor = 50 0.7653

Median filter kernel = 
3 x 3 0.8658 Gaussian filter kernel = 

3 x 3 0.8399 Blurring kernel = 3 x 3 0.8531

Median filter kernel = 
7 x 7 0.8518 Gaussian filter kernel = 

7 x7 0.8309 Blurring kernel = 7 x 7 0.8520
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The IoU values are generally robust across different filters, with slight variations. The median filter (3x3 kernel) has 
the best performance at an IoU of 0.8658, while the Gaussian filter (7x7 kernel) has the lowest at an IoU of 0.8309. 

Across all datasets, segmentation performance degrades as the salt and pepper noise level increases or as JPEG 
compression quality decreases, which is expected due to the increased image distortion. The segmentation algo-
rithms are robust to filtering distortions, particularly with smaller kernel sizes. This suggests the model can handle 
slight smoothing or blurring without significantly compromising accuracy. The JIGSAWS dataset generally shows 
higher IoU values under distortion than Endovis and Endoscape, indicating that the segmentation model might be 
better suited or trained for this specific dataset.

These tables and their corresponding analysis highlight the robustness and limitations of the surgical instrument 
segmentation model when subjected to various common image processing distortions. Understanding these 
effects is critical for improving the reliability of segmentation algorithms in practical, real-world scenarios where 
images may undergo different types of preprocessing.

Algorithm comparison 
In this section, the proposed surgical instruments segmentation and detection approach is compared with 7 

different methods presented in the literature. Which a resume of this comparison is showcase in Table 5. 

Table 9 showcases the efficacy of the proposed method for surgical instrument segmentation, offering an effi-
cient and effective solution. Unlike methods reliant on neural networks, the K-means algorithm can discern image 
patterns and structures autonomously, eliminating the need for pre-labeled data and making it ideal for medical 
environments requiring surgical instrument detection. Furthermore, the K-means algorithm demonstrates its 
adaptability by effectively handling changes in camera positioning and environmental illumination, thereby 
reducing segmentation errors. This robustness sets it apart from other methods that may require more complex 
supervised information or parameter adjustments, making it a practical and reliable system. The effectiveness of 
our proposed method is underscored by its comparison with existing research, affirming that the unsupervised 
approach based on K-means not only simplifies segmentation but also delivers superior efficiency and accuracy in 
identifying surgical instruments within medical images.

The Table 9 compares different surgical instrument segmentation methods assessed using metrics such as IoU, 
precision, recall, and F1 Score. Although comparisons have been made with existing methods, it is crucial to high-
light that the proposed method outperforms other approaches, especially regarding clinical applicability and com-
putational efficiency.

Unlike complex methods such as supervised deep neural networks, the proposed method uses an auto-super-
vised segmentation techniques such as K-means and Otsu image binarization for image ground truth generation 
and a neural network for the generalization of the image segmentation. It is significantly less intensive regarding 
the requirements for human time to create each image's ground truth. This stage demonstrates a high accuracy for 
image ground truth creation. Subsequently, it generates efficient neural network training to generalize character-
istics and reduce processing time to segment surgical instruments in different scenarios, as in the case of the three 
datasets. This characteristic makes it a viable option for applications or in resource-constrained environments.
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Method Technique Metric Dataset

Allan, 
et al.[20] Optical flow

Precision = 0.874
Recall = 0.93
F1 Score = 0.898

Ex vivo study from da Vinci Research 
Kit robotic system[10].

Yu, 
et al.[22] Neural network: Hollistic Unet

Accuracy = 0.9156
IoU = 0.8645
Dice = 0.9220

Robotic Instrument Segmentation 
Challenge[28].

Jha, 
et al.[19] Neural network: DDANet

Recall = 0.8703
Precision = 0.9348
F2 score = 0.8613
Accuracy = 0.9897
Dice = 0.8739
IoU = 0.8739

Robotic Instrument Segmentation 
Challenge[28].

Xue, 
et al.[23]

Atrous Spatial Pyramid Pooling layer and 
Convolutional Block Attention Module 
CBAM 

IoU = 0.861
Accuracy = 0.885

No public dataset, the dataset con-
sists in 7 common surgical instru-
ments with a data augmentation.

Wang, 
et al.[21] Random forest IoU = 0.9481 Not mention.

Baby, 
et al.[24] MaskRCNN IoU = 72.54 Robotic Instrument Segmentation 

Challenge[28].

Streckert, 
et al.[25] GAN, SegNet 

Dataset Endovio: 
IoU = 91.21
Synthetic dataset: 
IoU = 89.55 

Robotic Instrument Segmentation 
Challenge[28].

Proposed 
Method

Unsupervised segmentation: Machine 
learning K-means and Otsu image bina-
rization for ground truth creation and 
FCN model for the generalization of the 
instrument segmentation

IoU = 0.9641
Acc = 0.9689
Precision = 0.9372
Recall = 0. 358
F1 Score = 0.9338 
MSE = .0310

Trained with and tested with JHU-ISI 
Gesture and Skill Assessment 

Working Set (JIGSAWS), in additon 
it is tested with Endovis and 

Endoscape datasets)[29]

TABLE 9. Literature algorithms comparison with the proposed segmentation and detection approach.  

In clinical applicability, the proposed method offers a high accuracy of 0.9372 and an IoU of 0.9641, placing it above 
several methods using advanced neural networks or optical flow techniques. For example, Allan et al. report an F1 
Score of 0.898 using optical flow in an ex vivo study, while our method achieves an F1 Score of 0.9338 in the pri-
mary dataset on the JIGSAWS dataset, which includes surgical tasks in more diverse and challenging environments.

On the other hand, while methods such as the one proposed by Yu et al., with a holistic Unet network, present 
good precision (0.9220) and an acceptable IoU (0.8645), the proposed method achieves a better balance between 
precision and recall. Although the proposed method's recall could be higher, this approach could be improved with 
additional adjustments or combinations with other techniques, but it already demonstrates superiority in terms of 
overall accuracy. Another aspect to highlight is the proposed method's simplicity compared to approaches such as 
GAN or SegNet, which require extensive training and the use of synthetic data sets. The proposed method uses a 
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more direct approach and is less prone to overfitting, maintaining robustness critical in segmenting surgical 
instruments in various conditions.

Despite being an auto-supervised technique, the proposed approach has a higher generalization ability on dif-
ferent datasets without the need for retraining. The proposed method improves performance metrics and offers 
clear advantages in practical applicability and computational efficiency. This makes it ideal for implementation 
in surgical support systems, where speed, precision, and simplicity are essential for clinical adoption.

FIGURE 10. Neural networks efficiency for different dataset using JIGSAWS surgical instruments training. 

Figure 10 illustrates the efficiency of surgical instrument segmentation using the JIGSAWS database to train 
different neural networks. Among the models evaluated, UNet and FCN-5 perform better in segmenting these 
instruments, especially in the Knot-Tying and Needle-Passing tasks. The IoU index measures high efficiency. 
This algorithm ensures that the surgical instrument's segmentation in the images leads to accurate segmenta-
tion without significant errors. This finding underscores the K-means algorithm's effectiveness in image label-
ing, which contributes to the development of precise segmentation systems. Moreover, the practical applica-
tion of pre-training with the JIGSAWS database generalizes the surgical instrument segmentation with the 
neural network training for other tasks. This approach was applied to the EndoVis database; it achieved an 82 
% efficiency in recognizing specific surgical instruments used in endoscopies. This adaptability generates an 
accurate segmentation in diverse contexts, showcasing the robustness of the method.

Combining the neural network with automatic label generation and pre-training with JIGSAWS has proven to 
be an effective strategy for accurately and efficiently segmenting surgical instruments, both in specific tasks 
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and broader applications like endoscopies. In addition, the results in the Figure 10 demonstrate that the pro-
posed neural network outperforms other existing models in efficiency, including those based on Image 
Transformers. This superiority is observed in the segmentation capacity of surgical instruments, especially 
under controlled conditions. However, to maximize their applicability, the Image Transformers must be 
adjusted and manipulated to improve their efficiency in complex surgical scenarios. Future research should 
focus on optimizing these models, seeking a balance between accuracy and efficiency so that they can adapt 
to a wider variety of imaging conditions and clinical scenarios.

FIGURE 11. Neural networks efficiency for different dataset using JIGSAWS surgical instruments training. 

Figure 11 shows the processing time of five different neural networks used for the segmentation of surgical 
instruments, where SqueezeNet has the fastest processing time with 0.15 seconds, indicating that it is the 
most efficient network in terms of speed, while SegNet ( 0.31 seconds), FCN-5 (0.34 seconds), and UNet (0.38 
seconds) have moderate processing times, with SegNet being slightly faster than FCN-5 and UNet; On the 
other hand, RCNN has the longest processing time with 1.08 seconds, which could be a disadvantage in appli-
cations where speed is crucial, although SqueezeNet is the fastest network, since UNet and FCN-5 have a 
higher efficiency in terms of precision in the segmentation of surgical instruments, demonstrating that, 
despite not being the fastest, they offer a more precise and reliable segmentation, essential in surgical appli-
cations. Figure 11 highlights the importance of considering computational cost and accuracy when selecting 
a neural network for surgical instrument segmentation.

To reduce the computational time without decreasing the accuracy of the proposed system, an adaptive 
image resolution processing could be implemented, which begins with lower resolution analysis, increases 
detail only where needed, and can balance speed and accuracy, such as the Unit model. This technique can be 
used on the ground truth generation using some image descriptors for image region of interest detection 
where the surgical instrument is located. Multi-scale analysis is another approach that processes images at 
multiple resolutions simultaneously, allowing for quicker feature identification. Additionally, developing a 
hybrid model, where a lightweight model performs initial segmentation and is combined with a neural net-
work, such as a GAN model, to refine critical regions, reducing the processing time while maintaining high 
accuracy.
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Discussion
Our research focuses on developing a method for image segmentation of surgical instruments using the 

unsupervised K-means algorithm to automatically generate the ground truth for training neural networks. 
The results demonstrate high precision and accuracy in the detection and segmentation of surgical 
instruments, with a minimum error of 0.0297 and a precision of 0.9702 when evaluating the labels generated 
for training the neural networks. This approach accurately identifies patterns for detecting surgical 
instruments despite image shape, size, and texture changes.

The adaptability of the K-means algorithm to changes in lighting and camera position is a key advantage, 
allowing this algorithm to be used in different surgical environments. The results automate the detection and 
segmentation of instruments for the generation of ground truth. The proposed method demonstrates supe-
rior accuracy, efficiency, and adaptability compared with other existing approaches. Unlike other methods, 
the presented algorithm in this paper reduces human-machine work to generate training ground truth for 
systems based on neural networks; the proposed self-supervised approach eliminates the need to create the 
ground truth of surgical instruments manually. This unique feature makes it ideal for medical environments 
requiring the detection of surgical instruments.

Table 6 highlights the effectiveness of the proposed method for the segmentation of surgical instruments, 
offering an efficient solution. Unlike the techniques presented in the literature, the proposed method has the 
advantage of automatically generating the ground truth for the training of neural networks, which allows 
generalizing the learning of characteristics of surgical instruments to use them in databases other than those 
trained to segment surgical instruments precisely. This robustness distinguishes it from other methods that 
may require more complex monitoring or parameter adjustments, making it a practical and reliable system.

The number of clusters used in the k-means algorithm to detect regions of interest impacts the quality of the 
segmentation and the processing time. As the clusters increase, more detailed segmentation is allowed as 
more regions of interest are generated. However, this also increases processing time exponentially due to the 
computational complexity of the number of clusters. This balance between segmentation quality and pro-
cessing time is essential in optimizing the segmentation process.

A number of clusters between N = 5 and N = 10 are ideal, providing high performance (IoU and accuracy) 
without significantly increasing processing time. The choice of the number of clusters must consider a com-
promise between the quality of the segmentation and the processing time. The segmentation quality affects 
the neural network's training, which increases the error when applying the system in a different environ-
ment. Some aspects to consider would be the type of system where it is implemented since if it has few 
processing resources, the processing time would increase even more. Additionally, if the system is imple-
mented in applications different from the evaluation or training of surgeons, environmental changes must 
be considered when training the neural network. The system is designed to evaluate the surgeon's ability to 
perform surgery since, generally, even if they are experts, surgeons adjust the environment to the patient's 
characteristics to increase the surgical procedure's success. Finally, while more clusters can improve seg-
mentation accuracy, especially in images with significant brightness correction, it also significantly 
increases processing time.
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Combining the neural network with the automatic generation of labels generated by the K-means algorithm and 
pre-training with JIGSAWS has proven to be an effective strategy for accurately and efficiently segmenting surgi-
cal instruments in specific tasks and broader applications, such as endoscopies. However, our method has some 
limitations that will be addressed in future research to improve the segmentation of surgical instruments when 
using the pretrained neural network. On the other hand, methods should be explored to enhance the precision of 
segmenting the parts related to the surgical instrument. Implementing our algorithm in current robotic surgery 
systems could benefit patients and surgeons, automating the detection of surgical instruments and reducing 
human errors, for example, by detecting and correcting possible collisions between surgical instruments by sur-
geons.

Based on the results presented in the previous tables, a more developed section on the limitations of the proposed 
method could include the following points: the proposed method demonstrates strong performance in surgical 
instrument segmentation under various image distortions, certain limitations should be noted regarding its appli-
cability in different surgical scenarios and imaging conditions. The results from the JIGSAWS, Endovis, and 
Endoscape datasets indicate that the segmentation performance declines as the salt and pepper noise level 
increases. The method's performance deteriorates with lower JPEG compression quality factors, with IoU values 
falling as compression increases (quality factor = 50). In clinical environments where images might be compressed 
for storage or transmission, this could reduce segmentation accuracy. the method exhibits robustness to filtering 
techniques such as median, Gaussian, and blurring, the results show variability across different kernel sizes and 
filter types. For instance, the Endovis dataset displayed lower IoU values under filtering distortions than the 
JIGSAWS dataset. This inconsistency suggests that the method's robustness might vary depending on the specific 
characteristics of the dataset or the surgical context, such as the type of instruments or the nature of the surgery. 
The method performs differently across the JIGSAWS, Endovis, and Endoscape datasets, with the JIGSAWS dataset 
generally yielding higher IoU values. This disparity indicates that the process may be more finely tuned or opti-
mized for specific datasets. Therefore, its generalizability may be limited across different surgical scenarios, 
instruments, or imaging devices. This raises concerns about the method's applicability in diverse clinical settings 
where different datasets with varying characteristics are encountered.

CONCLUSIONS

This paper presents a method for surgical instrument segmentation using the unsupervised K-means algorithm 
to generate the ground truth necessary to train neural networks automatically. The results demonstrate high 
precision and accuracy, validating the effectiveness of the auto supervised approach in identifying patterns 
despite variations in the shape, size, and texture of the images. Combining the K-means algorithm with pre-
trained neural networks in JIGSAWS has proven an effective strategy, allowing accurate and efficient segmentation 
in various applications, including endoscopies. Unlike other methods, the algorithm presented in this paper 
reduces the human effort required to generate training ground truth for neural network-based systems. The 
proposed self-supervised approach eliminates the need for manual creation of ground truth for surgical 
instruments. This unique feature makes it ideal for medical environments requiring the detection of surgical 
instruments. Although some limitations will be addressed in future research, implementing our method in robotic 
surgery systems promises to improve surgical efficiency and reduce human errors by automating the detection of 
surgical instruments.
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The proposed method shows promise in surgical instrument segmentation, especially under controlled conditions. 
However, its sensitivity to certain image distortions, variability across datasets, and potential challenges in complex 
scenarios highlight areas where further refinement and validation are urgently needed. Addressing these limitations 
will be crucial for enhancing the method's applicability and reliability across a wider range of surgical scenarios and 
imaging conditions. Training the neural network used in segmentation with images from diverse scenarios and 
environments, including distorted images, is essential to improve the system image generalization and surgical 
instrument segmentation. This approach will enhance the model's ability to generalize segmentation tasks and 
improve efficiency under varying conditions. We can create a more robust and versatile segmentation system by 
developing an adaptive algorithm capable of adjusting to different environmental factors. Furthermore, continuing 
the investigation with a more robust neural model is planned as a future research. Combined with the current 
system, this advanced model will overcome existing limitations and enhance the method's performance, ensuring 
accurate and reliable surgical instrument segmentation across a broader spectrum of clinical applications.
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