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ABSTRACT
Pediatric diabetes research is often constrained by data scarcity, hindering the development of accurate predictive 
models for clinical applications. This study addresses this limitation by evaluating the effectiveness of Generative 
Adversarial Networks (GANs) and Wasserstein GANs (WGANs) in generating synthetic datasets that replicate 
the statistical properties of real pediatric diabetes data. A structured methodology was applied, incorporating 
preprocessing, model design, and dual evaluation metrics: Jensen-Shannon and Kullback-Leibler divergences for 
statistical fidelity, and a classification model to assess practical utility. Results demonstrate that both models produce 
high-fidelity synthetic datasets, with WGANs showing superior performance in capturing complex patterns due to 
improved training stability. Nonetheless, challenges remain in replicating the inherent variability of pediatric data, 
influenced by growth and developmental factors. This work highlights the potential of synthetic data to augment 
pediatric diabetes datasets, facilitating the development of robust and generalizable predictive models. Limitations 
include the dependency on initial data quality and the specificity of the models to pediatric datasets. By addressing 
critical gaps in data availability, this study contributes to advancing AI-driven healthcare solutions in pediatric 
diabetes research. 
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RESUMEN 
La investigación en diabetes pediátrica a menudo está limitada por la escasez de datos, lo que dificulta el desarrollo 
de modelos predictivos precisos para aplicaciones clínicas. Este estudio aborda esta limitación evaluando la 
efectividad de las Redes Generativas Antagónicas (GANs) y las Wasserstein GANs (WGANs) para generar conjuntos 
de datos sintéticos que replican las propiedades estadísticas de los datos reales de diabetes pediátrica. Se aplicó 
una metodología estructurada que incluye el preprocesamiento, diseño de modelos y métricas de evaluación dual: 
divergencias de Jensen-Shannon y Kullback-Leibler para evaluar la fidelidad estadística, y un modelo de clasificación 
para evaluar la utilidad práctica. Los resultados demuestran que ambos modelos generan datos sintéticos de alta 
fidelidad, siendo las WGANs superiores en la captura de patrones complejos gracias a su estabilidad de entrenamiento 
mejorada. Sin embargo, persisten desafíos para replicar la variabilidad inherente de los datos pediátricos, influida por 
el crecimiento y los factores de desarrollo. Este trabajo resalta el potencial de los datos sintéticos para aumentar los 
conjuntos de datos de diabetes pediátrica, facilitando el desarrollo de modelos predictivos robustos y generalizables. 
Las limitaciones incluyen la dependencia de la calidad de los datos iniciales y la especificidad de los modelos a 
los conjuntos de datos pediátricos. Este estudio contribuye a cerrar brechas críticas en la disponibilidad de datos, 
impulsando soluciones de salud personalizadas basadas en inteligencia artificial para la investigación en diabetes 
pediátrica.

PALABRAS CLAVE: diabetes infantil, generación de datos sintéticos, Redes Generativas Adversarias (GANs), Redes 
Generativas Adversarias de Wasserstein (WGANs)
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INTRODUCTION
In recent years, artificial intelligence (AI) has achieved considerable advancements in the healthcare sector, intro-

ducing groundbreaking methods for disease diagnosis, prediction, and management. AI-driven models, particularly 
those utilizing machine learning (ML), have become indispensable tools in enhancing the accuracy of medical diag-
noses and in personalizing treatment plans[1][2][3]. These advancements are especially crucial in the management of 
chronic diseases such as diabetes, where early detection and precise management are vital to improving patient 
outcomes and quality of life[4][5]. The success of AI in healthcare, however, is heavily dependent on the availability 
of large, high-quality datasets, which are often difficult to obtain due to various constraints including privacy con-
cerns and the logistical challenges of data collection[6].

Diabetes, a chronic metabolic disorder, requires diligent management and has become a significant global health 
crisis. It is one of the leading causes of death and disability worldwide, affecting over 537 million adults and contrib-
uting to millions of deaths each year[7]. The burden of diabetes is escalating rapidly, with the prevalence expected to 
rise substantially in the coming decades. The disease is a major contributor to heart disease, stroke, kidney failure, 
blindness, and lower limb amputations, imposing enormous strain on healthcare systems and economies globally[8]. 
Without proper management, diabetes can lead to severe and life-threatening complications, making it a critical 
focus of public health efforts worldwide. Within this global context, diabetes in specific populations, such as chil-
dren, demands particular attention due to the unique challenges it presents.

Pediatric diabetes, encompassing both type 1 and type 2 diabetes, presents distinct challenges due to its early onset 
and the requirement for lifelong care. Type 1 diabetes, the most common form in children, is an autoimmune con-
dition that results in the destruction of insulin-producing beta cells in the pancreas, needing continuous insulin 
therapy for survival[9]. The increasing incidence of pediatric diabetes, particularly type 1 diabetes, is a growing con-
cern, as it often manifests during critical developmental periods, heightening the risk of long-term complications 
such as cardiovascular disease, neuropathy, and retinopathy[10]. Additionally, the rise of type 2 diabetes in children, 
largely driven by the global obesity epidemic, adds further complexity to disease management as it combines insu-
lin resistance with the challenges of ongoing growth and development[11].

Effective management and early intervention in pediatric diabetes hinge on the development of accurate and reli-
able predictive models. These models are essential for identifying at-risk individuals, optimizing treatment strate-
gies, and ultimately improving patient outcomes. However, the scarcity of large, high-quality datasets in pediatric 
diabetes research presents a significant barrier to the creation of such models. The challenges of collecting compre-
hensive data in children are compounded by ethical concerns, including the need to protect patient privacy and 
obtain informed consent, as well as the natural variability in children's growth patterns, which introduces additional 
complexity into data collection and analysis. As a result, researchers often must work with small, inconsistent data-
sets that are not sufficient to train robust machine learning models.

To address these challenges, synthetic data generation has emerged as a promising solution. Synthetic data are 
artificially created datasets that replicate the statistical properties of real-world data, allowing researchers to aug-
ment existing datasets or generate new ones when real data are insufficient or difficult to obtain[12][13]. This approach 
is particularly valuable in pediatric diabetes research, where data limitations can significantly hinder the develop-
ment of effective AI models. By generating synthetic data, researchers can overcome the constraints imposed by 
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small and inconsistent datasets, thereby enhancing the robustness and generalizability of predictive models. This 
not only eases the development of more accurate models but also helps in exploring a wider range of scenarios and 
outcomes that may be underrepresented in real-world data. 

Among the various techniques for generating synthetic data, Generative Adversarial Networks (GANs) and their 
variant, Wasserstein GANs (WGANs), have gained prominence due to their ability to produce realistic and high-
quality synthetic data[10]. GANs consist of two neural networks, a generator and a discriminator, which work in tan-
dem to create data that closely mimic real-world observations. The generator is tasked with producing synthetic 
data, while the discriminator evaluates the realism of the generated data, driving the generator to continuously 
improve its outputs[14]. WGANs, an extension of traditional GANs, address some of the limitations of GANs by 
employing the Wasserstein distance as a measure of how well the generated data match the real data. This approach 
leads to a more stable and effective training process, making WGANs particularly suitable for generating synthetic 
datasets in complex and high-dimensional domains like medical data[15].

In the context of pediatric diabetes, the application of GANs and WGANs for generating synthetic data is particularly 
promising. These models are adept at capturing the intricate and multi-dimensional relationships inherent in med-
ical data, making them ideal for creating synthetic datasets that can be used to train AI models. However, generating 
synthetic data is only one part of the equation, it is equally important to ensure that the synthetic data can serve as 
a valid substitute for real-world data. The Jensen-Shannon divergence[16] and the Kullback-Leibler divergence [17] 
evaluate the similarity between the distributions of synthetic and real data[18]. The Jensen-Shannon divergence, due 
to its symmetric and bounded nature, serves as a general measure of how closely the synthetic data align with the 
real data, with lower values indicating a closer match. The Kullback-Leibler divergence offers additional insight by 
highlighting specific areas where the synthetic data may differ from the real data. Additionally, the synthetic data’s 
utility is assessed through a classification model trained on both real and synthetic datasets, using metrics such as 
accuracy, precision, recall, F1-score, and ROC AUC. This combined approach ensures a comprehensive evaluation of 
the synthetic data, both in terms of its statistical alignment with real data and its practical applicability in AI model 
training and medical research.

Building on the importance of evaluating synthetic data with robust metrics, next-generation sequencing (NGS) has 
significantly contributed to the field of pediatric diabetes by enabling the identification of genetic variants associ-
ated with the disease. NGS has been used to uncover key insights into monogenic diabetes and gene-environment 
interactions, providing a deeper understanding of disease mechanisms and potential therapeutic targets [19]. 

However, the vast and heterogeneous datasets generated by NGS pose challenges for integration into predictive 
models, largely due to insufficient annotation and the complexity of multi-omics data[20]. Synthetic data generation, 
as proposed in this study, offers a complementary approach to address these limitations by augmenting NGS-
derived datasets and enhancing their utility for machine learning applications. By employing GANs and WGANs, the 
synthetic datasets created in this work aim to align closely with real-world data distributions while improving their 
applicability for predictive modeling in pediatric diabetes research. These challenges underscore the critical need for 
innovative approaches like synthetic data generation, which not only augment NGS-derived datasets but also enable 
their integration into machine learning models for predictive analysis.

The importance of generating high-quality synthetic data has been underscored in recent studies, which emphasize 
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the need for advanced synthetic data generation techniques to overcome the inherent limitations of real-world data 
collection[21][22]. For instance, the application of GANs in generating synthetic diabetes data has been successfully 
demonstrated in various studies, including work by García-Domínguez et al.[4]. This study addresses the critical 
issue of data scarcity in pediatric diabetes by generating synthetic datasets using both GAN and WGAN methodolo-
gies. The quality of the generated data is rigorously evaluated using both the Jensen-Shannon divergence and the 
Kullback-Leibler divergence to ensure close alignment with the characteristics of real-world data. The aim is to pro-
vide valuable insights into effective practices for synthetic data generation in medical research, ultimately support-
ing the development of AI-driven healthcare solutions that enhance the management and outcomes of pediatric 
diabetes.

The main contribution of this work lies in the evaluation of GANs and WGANs for generating synthetic data specifi-
cally for pediatric diabetes, a domain that remains underexplored despite its clinical importance. Unlike previous 
studies that focus solely on statistical metrics, this study introduces a dual evaluation approach, combining tradi-
tional statistical divergence measures (Jensen-Shannon and Kullback-Leibler) with a supervised classification 
model. This comprehensive validation not only ensures the fidelity of the generated data but also demonstrates its 
practical applicability for predictive tasks, addressing a critical gap in the generation and evaluation of synthetic 
pediatric datasets.

This paper is organized as follows: The “Materials and Methods” section describes the pediatric diabetes dataset 
and the preprocessing steps for synthetic data generation. It then outlines the architectures of the GAN and WGAN 
models and the techniques employed in their design. Additionally, the section details the methods used to evaluate 
the quality of the generated data, including both distributional similarity metrics (Jensen-Shannon and Kullback-
Leibler divergences) and the performance of a classification model trained on real and synthetic data. The “Results 
and Discussion” section presents the outcomes of the synthetic data generation process, including a comparison of 
the two methods based on these evaluation approaches. Finally, the “Conclusions” section summarizes the key 
findings, discusses implications for future research, and highlights the potential of synthetic data in enhancing 
AI-driven healthcare solutions.

MATERIALS AND METHODS

This section presents the foundational methods and concepts employed in this study to generate and evaluate 
synthetic data for pediatric diabetes research. It begins with a comprehensive description of the dataset, highlight-
ing the key clinical, biochemical, and genetic variables that are crucial for understanding diabetes in children. This 
is followed by an introduction to Generative Adversarial Networks (GANs) and their variant, Wasserstein GANs 
(WGANs), outlining their theoretical basis, mechanisms, and advantages in generating realistic synthetic data that 
mirrors complex medical datasets. Additionally, the section provides an overview of the evaluation metrics, includ-
ing the Jensen-Shannon and Kullback-Leibler divergences, which are critical for assessing the quality and fidelity of 
the synthetic data relative to the original data, as well as the performance metrics derived from a classification 
model, which evaluate the practical applicability of the synthetic data in AI-driven tasks. 

Figure 1 illustrates the methodological framework employed in this study. The process begins with the input of the 
original pediatric diabetes dataset, which undergoes preprocessing steps such as feature filtering, handling data 
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incompleteness, and normalization to ensure the quality and consistency of the data. Subsequently, synthetic data 
is generated using two models: Generative Adversarial Networks (GAN) and Wasserstein GANs (WGAN). Finally, the 
synthetic datasets are evaluated through two complementary approaches: statistical divergence metrics (Jensen-
Shannon and Kullback-Leibler) and a supervised classification model (Random Forest), which assesses the practical 
utility of the generated data. This pipeline provides a structured and comprehensive methodology for generating 
high-quality synthetic data tailored to the complexities of pediatric diabetes.

FIGURE 1.  Methodological framework for synthetic data generation and evaluation, including dataset input, preprocessing, 
data generation (GAN and WGAN), and evaluation through divergence metrics and classification modeling.

Original dataset description
The dataset used in this study consists of 834 records related to pediatric diabetes patients. It includes a range of 

clinical, biochemical, and genetic variables that are crucial for understanding various aspects of diabetes in children. 
The dataset encompasses 22 features, each representing a different attribute relevant to the diagnosis and manage-
ment of diabetes. These features are summarized in Table 1.
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TABLE  1. Overview of Features in the Pediatric Diabetes Dataset.
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Variable Description 

Location Geographic location of the patient or the clinical 
study site. 

StudyProject The project or study identifier. 
RecordID A unique identifier for each patient record. 

Sex 
A binary variable indicating the sex of the patient, 
where '0' represents females (girls) and '1' 
represents males (boys). 

Age The age of the patient, measured in years. 
BMI Body Mass Index (BMI), which is a measure of body 

fat based on height and weight. 

BMI_Z_Score The z-score for BMI, which provides a standardized 
measure of BMI relative to a reference population. 

BodyWeightStatus 
A categorical variable indicating body weight 
classification, where '0' represents normal weight 
and '1' represents obesity. 

SystolicBP Systolic blood pressure, measured in millimeters of 
mercury (mmHg). 

DiastolicBP 
 

Diastolic blood pressure, also measured in 
millimeters of mercury (mmHg). 

Glucose Blood glucose level, measured in milligrams per 
deciliter (mg/dL). 

TotalCholesterol Total cholesterol level, measured in milligrams per 
deciliter (mg/dL). 

Triglycerides Triglyceride level, measured in milligrams per 
deciliter (mg/dL). 

HDL_Cholesterol High-density lipoprotein cholesterol (HDL-C) level, 
measured in milligrams per deciliter (mg/dL). 

LDL_Cholesterol Low-density lipoprotein cholesterol (LDL-C) level, 
measured in milligrams per deciliter (mg/dL). 

Insulin Insulin level, measured in micrograms per milliliter 
(�g/mL). 

HOMA_IR 
Homeostatic Model Assessment for Insulin 
Resistance (HOMA-IR), which is used to evaluate 
insulin resistance. 

SalivaryAmylase Salivary amylase activity, measured in units per liter 
(UI/L). 

PancreaticAmylase Pancreatic amylase activity, measured in units per 
liter (UI/L). 

TotalAmylase Total amylase activity, measured in units per liter 
(UI/L). 

CNVs_SalivaryAmylase Copy number variations of the gene associated with 
salivary amylase production 

CNVs_PancreaticAmylase Copy number variations of the gene associated with 
pancreatic amylase production 



8 Antonio García-Dominguez, et al. Synthetic Data Generation for Pediatric Diabetes Research Using GANs and WGANs

(1)�̂�𝑥𝑖𝑖𝑖𝑖 =  1
𝑛𝑛 ∑ 𝑥𝑥𝑖𝑖𝑖𝑖

𝑛𝑛

𝑖𝑖 = 1
 

Data corresponds to Mexican patients and were collected at the General Hospital “Centro Médico Siglo XXI” of the 
Instituto Mexicano del Seguro Social (IMSS). All participants provided informed consent prior to their inclusion in 
the study, titled "Variación y funcionalidad del número de copias del gen de amilasa (AMY1, AMY2) y su asociación 
con microbiota intestinal en obesidad infantil". The study adhered to the principles outlined in the Declaration of 
Helsinki, and the protocol received approval from the Ethics Committee of the “Instituto Mexicano del Seguro 
Social” and the “Comisión Nacional de Investigación Científica” (R-2016-785-097). 

Data preprocessing
Data preprocessing is a crucial step in preparing the dataset for synthetic data generation, ensuring that the models 

employed can effectively learn and generate high-quality synthetic samples that closely resemble real-world data. 
To achieve this, it is necessary to implement a series of systematic preprocessing steps, including the removal of 
irrelevant variables, the handling of data incompleteness, and the normalization of continuous variables. These 
procedures are outlined in detail below. 

Feature filtering
In this study, it is necessary to filter the dataset to eliminate features that are not relevant to the objectives. The 

features 'Location', 'StudyProject', and 'RecordID' are removed, as they do not provide meaningful information for 
the analysis of pediatric diabetes. 'Location' and 'StudyProject' are administrative variables without clinical, bio-
chemical, or genetic relevance, while 'RecordID' serves merely as a unique identifier with no analytical value. 
Removing these features reduces dimensionality, thereby simplifying the dataset and enhancing both the efficiency 
and performance of the models. In the context of machine learning and data science, reducing dimensionality is a 
critical step that improves model interpretability and mitigates the risk of overfitting by eliminating noise and irrel-
evant data[23][24].

Data incompleteness
Addressing missing values is essential in preparing medical datasets, where incomplete data can significantly 

impact the performance and reliability of machine learning models[25]. In this study, data incompleteness is man-
aged through mean imputation, a technique widely employed for handling missing data, particularly when dealing 
with continuous variables. This approach involves replacing missing values with the mean of the corresponding 
feature, thereby preserving the overall central tendency and distribution of the data[26].

Mean imputation is applied by calculating the mean of each feature with missing values and substituting this mean 
for the missing entries[27]. Mathematically, for a given feature Xj with missing values, the imputed value x̂ij for any 
missing observation xij is given by Equation (1).

where n represents the total number of observations for which the feature Xj is not missing. This method assumes 
that the missing data are Missing At Random (MAR), implying that the probability of missingness is not related to 
the missing values themselves but may be related to the observed data. Mean imputation preserves the mean of the 
observed data and minimizes the impact on the overall distributional properties, maintaining the variance structure 
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to some extent. However, it may reduce the natural variability of the dataset by introducing repeated values, which 
is an acceptable trade-off in this context due to the small proportion of missing data[28][29][30].

While other imputation methods, such as median or mode imputation, can handle non-normally distributed data 
or categorical variables, mean imputation is chosen for its computational efficiency and its ability to maintain the 
central tendency of the dataset. This ensures that the imputations do not introduce significant bias, allowing the 
synthetic data generation models to learn from a complete and consistent dataset while preserving its original char-
acteristics as closely as possible.

Data normalization
Data normalization is a fundamental step in preparing datasets for machine learning models, particularly neural 

networks, which are highly sensitive to the scale of input data[31]. In this study, Min-Max Scaling is employed to 
normalize the continuous variables, transforming each feature to a fixed range, typically [0, 1]. This normalization 
technique is defined by Equation (2).

where X represents the original feature values, Xmin is the minimum value, and Xmax is the maximum value of the 
feature[32]. Min-Max Scaling is chosen because it preserves the original distribution shape while ensuring that all 
features contribute equally to the model's learning process. This method is particularly advantageous over other 
normalization techniques, such as Z-score normalization, which centers the data around the mean and scales based 
on standard deviation but can be more sensitive to outliers and does not always maintain the relative spacing of 
values[33][34]. 

The use of Min-Max Scaling is especially beneficial in the context of Generative Adversarial Networks (GANs) and 
Wasserstein GANs (WGANs). These models require a stable training process to effectively generate high-quality 
synthetic data, and normalization helps by ensuring that gradients do not vanish or explode due to disparate fea-
ture scales. By standardizing the input data, the models can learn underlying patterns more effectively, thereby 
improving the robustness and quality of the synthetic data generated[35].

Generative models
The scarcity and variability of high-quality pediatric diabetes data present significant challenges in developing 

reliable predictive models. To mitigate these issues, various generative models have been developed to create syn-
thetic datasets that replicate the statistical properties and complex relationships found in real-world data. In this 
study, Generative Adversarial Networks (GANs) and Wasserstein Generative Adversarial Networks (WGANs) are 
utilized to generate synthetic data that closely mirrors actual patient data, thereby enhancing the robustness and 
generalizability of predictive tools for clinical application. These approaches also help address concerns related to 
data privacy and ethical considerations.

Generative Adversarial Networks (GANs)
Generative Adversarial Networks (GANs), introduced by Goodfellow et al. [36], are a powerful class of generative 

𝑋𝑋𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 = 𝑋𝑋 − 𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚
𝑋𝑋𝑚𝑚𝑠𝑠𝑚𝑚 −  𝑋𝑋𝑚𝑚𝑚𝑚𝑚𝑚

 (2)
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The adversarial training process of GANs is formulated as a minimax game, where the generator aims to "fool" the 
discriminator by producing data that the discriminator classifies as real, while the discriminator strives to correctly 
identify whether a given sample is real or fake. The objective function that governs this process is defined by 
Equation (3).

models widely used for creating synthetic data that closely mimics real-world data distributions. GANs consist of 
two neural networks: a generator G and a discriminator D, which are trained simultaneously through an adversarial 
process. As depicted in Figure 2, the generator's role is to produce synthetic data samples by transforming random 
noise, typically drawn from a prior distribution such as a Gaussian, into data that resembles the real dataset. The 
discriminator, on the other hand, acts as a binary classifier that attempts to distinguish between genuine data sam-
ples and those generated by the generator.

FIGURE 2. Overview of the Generative Adversarial Network (GAN) Architecture.

𝑚𝑚𝑚𝑚𝑛𝑛𝐺𝐺𝑚𝑚𝑚𝑚𝑥𝑥𝐷𝐷𝑉𝑉(𝐷𝐷, 𝐺𝐺) = 𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))] (3)

where:
 • x represents real data samples drawn from the true data distribution pdata(x).
 • z is a latent variable (noise) sampled from a prior distribution pz(z).
 • G(z) denotes the synthetic sample generated by the generator from noise z.
 • D(x) provides the probability that a given input x is a real sample.

In this framework, the generator G learns to minimize the probability of the discriminator correctly identifying its 
synthetic outputs as fake, while the discriminator D aims to maximize the accuracy of its predictions. This continu-
ous feedback loop drives both networks to improve iteratively: the generator becomes better at creating realistic 
data, and the discriminator becomes more adept at detecting synthetic samples. The training reaches equilibrium 
when the discriminator cannot distinguish between real and generated data, outputting a probability close to 0.5 for 
both[36].
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GANs rely on two critical components to function effectively:

 1. Adversarial Loss: The loss function quantifies the performance of both the generator and the discrimina-
 tor. For the discriminator, the loss function can be expressed as shown in Equation (4). 

Revista Mexicana de Ingeniería Biomédica 

 
 

 

 

 

 

 

 

 

Component Description 

Generator 
4 dense layers: Input (150 neurons), Hidden 
layers (512, 1024, 2048 neurons) with Leaky 
ReLU activations, Batch Normalization after each 
hidden layer, Output layer with tanh activation. 

Discriminator 

5 dense layers: Input layer, Hidden layers (2048, 
1024, 512, 256 neurons) with Leaky ReLU 
activations, Dropout layers (rate = 0.4) after each 
hidden layer, Output layer with sigmoid 
activation. 

Optimizer RMSprop with learning rate of 0.0001 for both 
generator and discriminator. 

Training epochs 100 epochs with a batch size of 64. 

Noise addition Gaussian noise added to inputs of discriminator 
and final synthetic dataset to maintain diversity. 

Label smoothing Applied to real samples (0.9) and fake samples 
(0.1) to improve training stability. 

Post-processing Descaling and adjustment of discrete variables to 
ensure realistic data values. 

TABLE 2. GAN Architecture and Training Parameters for Synthetic Data Generation.

 2. Optimization and Stability: Training GANs can be challenging due to issues like mode collapse, where the 
 generator produces limited diversity in outputs, and training instability caused by non-convergence or
  oscillations. Techniques such as using alternative loss functions (e.g., Wasserstein loss for WGANs [35]),
 careful tuning of hyperparameters, label smoothing, and architectural adjustments like batch normaliza-
 tion and dropout layers are employed to mitigate these problems [37].

Model design and implementation
To effectively generate synthetic datasets that capture the complex characteristics of pediatric diabetes data for 

this study, a GAN was carefully designed and implemented with specific architectural choices and training param-
eters. These were selected to achieve an optimal balance between model complexity, training stability, and the 
generation of high-quality synthetic data. Table 2 provides a detailed overview of the key architectural components 
and training parameters used in this study.

The architecture and training parameters of the GAN model were selected based on established practices in the 
literature and tailored to meet the requirements of this study. The generator and discriminator were designed with 

𝐿𝐿𝐷𝐷 = −(𝐸𝐸𝑥𝑥∼𝑝𝑝𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑥𝑥)[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝑥𝑥)] + 𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙(1 − 𝐷𝐷(𝐺𝐺(𝑧𝑧)))]) (4)

 For the generator, the goal is to minimize the loss function as defined in Equation (5).

𝐿𝐿𝐺𝐺 = −𝐸𝐸𝑧𝑧∼𝑝𝑝𝑧𝑧(𝑧𝑧)[𝑙𝑙𝑙𝑙𝑙𝑙 𝐷𝐷(𝐺𝐺(𝑧𝑧))] (5)
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dense layers and activation functions, such as Tanh and Leaky ReLU, which are widely recognized for their ability 
to improve gradient flow and stabilize adversarial training[36][38]. The RMSprop optimizer, combined with a care-
fully chosen learning rate, was employed to ensure stable convergence during training[37]. To enhance model 
robustness and diversity in the generated data, additional techniques such as batch normalization, noise addition, 
label smoothing, and dropout were integrated. These approaches, supported by prior research, have proven effec-
tive in improving training stability and preventing overfitting in GAN architectures[39][40]. Post-processing steps, 
including descaling and adjustment of discrete variables, were applied to ensure the synthetic datasets reflected 
realistic and clinically meaningful values. Collectively, these design choices contributed to the successful genera-
tion of synthetic datasets that accurately capture the complex characteristics of pediatric diabetes data.

Wasserstein Generative Adversarial Networks (WGANs)
Wasserstein Generative Adversarial Networks (WGANs) are an improved variant of traditional GANs, designed to 

address common challenges such as instability during training and mode collapse, where the generator fails to cap-
ture the full diversity of the real data distribution. Introduced by Arjovsky et al.[35], WGANs use the Wasserstein 
distance (also known as Earth Mover's Distance) as a loss function, which provides more stable gradients for training 
and leads to improved convergence properties. The Wasserstein distance is defined as shown in Equation (6).

𝑊𝑊(𝑝𝑝𝑟𝑟, 𝑝𝑝𝑔𝑔) =  𝑖𝑖𝑖𝑖𝑓𝑓𝛾𝛾𝛾𝛾𝛾𝛾(𝑝𝑝𝑟𝑟,𝑝𝑝𝑔𝑔)𝐸𝐸(𝑥𝑥,𝑦𝑦)∼𝛾𝛾[||𝑥𝑥 − 𝑦𝑦||] (6)

where:
 •pr is the distribution of the real data.
 •pg is the distribution of the generated data by the generator G.
 •Π(pr,pg) represents the set of all joint distributions γ(x,y) whose marginals are pr and pg, respectively.

Using this distance allows WGANs to maintain meaningful gradients throughout the training process, even when 
there is limited overlap between the real and generated data distributions. Instead of the discriminator outputting a 
probability, as in traditional GANs, the critic in a WGAN outputs a real-valued score, which estimates the Wasserstein 
distance between the real and generated data distributions. The generator is trained to minimize this distance, while 
the critic is trained to maximize it. This formulation leads to more stable training, as it avoids problems such as van-
ishing gradients that can occur with other types of loss functions[41].

To ensure that the Wasserstein distance is valid, the critic function must satisfy the Lipschitz continuity condition, 
which is enforced by clipping the weights of the critic to a small range (e.g., [−0.01,0.01]). This weight clipping helps 
maintain stable gradients and promotes effective training, further reducing the likelihood of mode collapse and 
enhancing the quality of the synthetic data produced.

While WGANs introduce significant improvements in training dynamics through these changes, their overall archi-
tecture in terms of the core components (generator and critic) remains similar to that of a traditional GAN. Both 
models consist of a generator network that creates synthetic data and a discriminator (or critic in the case of WGAN) 
that evaluates the data. Therefore, the differences between GAN and WGAN primarily lie in the loss function and 
training strategies, rather than in the architectural layout itself [41][42]. For this reason, a separate figure illustrating 
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the architecture of WGAN is not included, as it would visually mirror the figure already provided for the standard 
GAN.

Model design and implementation
To effectively generate synthetic datasets that capture the complex characteristics of pediatric diabetes data for 

this study, a WGAN was carefully designed and implemented with specific architectural choices and training 
parameters. The chosen architecture and parameters aim to leverage the advantages of the Wasserstein distance, 
ensuring stable training and high-quality data generation. The details are shown in Table 3.
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Component Description 

Generator 
3 dense layers: Input (150 neurons), Hidden layers 
(256, 512 neurons) with Leaky ReLU activations, 
Batch Normalization after each hidden layer, Output 
layer with tanh activation. 

Critic 
(Discriminator) 

3 dense layers: Input layer, Hidden layers (512, 256 
neurons) with Leaky ReLU activations, Dropout 
layers (rate = 0.4), and a final output layer without 
activation for Wasserstein loss computation. 

Optimizer RMSprop with a learning rate of 0.00005 for both 
the generator and the critic. 

Training epochs 100 epochs with a batch size of 32. 
Weight Clipping Applied to the critic with a clip value of 0.01 to 

enforce the Lipschitz continuity condition. 
Post-processing Descaling and adjustment of discrete variables to 

ensure realistic data values. 

TABLE 3. WGAN Architecture and Training Parameters for Synthetic Data Generation.

The choice of these parameters and configurations reflects a balance between model complexity, training stability, 
and the ability to generate high-quality synthetic data. The generator and critic architectures, with three dense lay-
ers and Leaky ReLU activations, are specifically designed to capture the intricate patterns in pediatric diabetes data. 
Batch normalization is incorporated in the generator to stabilize gradient updates, while dropout is applied in the 
critic to prevent overfitting during adversarial training[37][41].

The RMSprop optimizer with a learning rate of 0.00005 was selected to ensure gradual convergence and prevent 
instability during the adversarial training process. This is particularly important in the WGAN framework, as the 
Wasserstein distance requires precise optimization to maintain the Lipschitz continuity condition[35]. Weight clip-
ping with a small range (0.01) enforces this condition, further enhancing the stability and effectiveness of the train-
ing process[14].

Additionally, the number of training epochs (100) and the batch size (32) were carefully chosen to balance suffi-
cient training iterations and computational efficiency. These configurations allow both the generator and critic to 
achieve optimal performance without overfitting the data. Post-processing adjustments, including descaling and 
the refinement of discrete variable values, ensure that the generated synthetic data remains realistic and clinically 
meaningful[38][39].

The WGAN framework was chosen for its ability to address limitations in traditional GANs, particularly in stabiliz-
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ing the training process and generating diverse, high-quality data. By combining the standard GAN approach with 
the more robust WGAN framework, this study leverages the strengths of each model to produce synthetic datasets 
that are not only accurate but also diverse and suitable for developing reliable predictive models.

Evaluation metrics
To rigorously assess the quality of the synthetic datasets generated by the GAN and WGAN models, three comple-

mentary evaluation methods are employed: Jensen-Shannon Divergence (JSD), Kullback-Leibler Divergence (KLD), 
and Predictive Model Evaluation through a Random Forest classifier. These metrics provide a comprehensive anal-
ysis of the fidelity, statistical alignment, and utility of the synthetic data by quantifying distributional similarities 
and assessing their practical application in predictive tasks.

Jensen-Shannon Divergence (JSD)
The Jensen-Shannon Divergence (JSD) is a statistical measure used to quantify the similarity between two proba-

bility distributions[43]. As a symmetrized and smoothed version of the Kullback-Leibler divergence, the JSD provides 
a bounded and interpretable metric for assessing how one distribution diverges from another. It is particularly suit-
able for evaluating the performance of generative models, such as GANs and WGANs, by measuring the extent to 
which the synthetic data replicates the distributional characteristics of real-world data[44][45].

Mathematically, the JSD between two discrete probability distributions P and Q is defined as shown in Equation 
(7):

𝐽𝐽𝐽𝐽𝐽𝐽(𝑃𝑃 || 𝑄𝑄) = 1
2 𝐾𝐾𝐾𝐾(𝑃𝑃 || 𝑀𝑀) + 1

2 𝐾𝐾𝐾𝐾(𝑄𝑄 || 𝑀𝑀) (7)

where:
 • P and Q are the two distributions being compared.
 • M=1/2(P+Q) is the average distribution.
 • KL(P || M) and KL(Q || M) ar re the Kullback-Leibler divergences between each distribution and the mean 

distribution M.

The JSD is symmetric (JSD(P || Q) = JSD(Q || P)) and is bounded between 0 and 1. A value of 0 indicates that the 
two distributions are identical, while values closer to 1 indicate greater divergence. This makes JSD a robust metric 
for comparing distributions, as it remains finite and interpretable even when the distributions have non-overlap-
ping support.

In this study, the JSD is employed to rigorously evaluate the similarity between the real pediatric diabetes dataset 
and the synthetic datasets generated by the GAN and WGAN models. The JSD is chosen because it provides a com-
prehensive measure of distributional similarity, capturing both general alignment and specific differences between 
the real and synthetic data distributions. This is particularly important given the complex nature of pediatric diabe-
tes data, which may contain nuanced patterns and variability that must be accurately reflected in the synthetic data.

The implementation of the Jensen-Shannon Divergence (JSD) in this study is carried out through the following 
steps:
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 1. Data Alignment: Both the real and synthetic datasets are aligned to ensure they contain identical feature
  columns. Any missing values are removed to maintain consistency and comparability across all features.
 2. Feature-wise Calculation of JSD: For each feature in the datasets, probability distributions are represented 
 by constructing histograms using a consistent binning strategy. The JSD is computed for each feature by
 comparing the normalized histograms of real and synthetic data, providing a divergence measure that   

              reflects the degree of similarity between the synthetic and real data distributions for that specific feature.
 3. Aggregation Across Features: The JSD values calculated for all features are averaged to produce a single,
 overall measure of divergence. This mean JSD value captures the overall similarity between the synthetic
 and real datasets, considering all features simultaneously.

The use of JSD in this study is justified by its capacity to provide a clear and quantitative assessment of the extent 
to which the synthetic data replicates the distributional characteristics of the original data. By evaluating both 
global and feature-specific similarities, the JSD offers a robust measure of the performance of the generative mod-
els, ensuring that the synthetic datasets produced are suitable for further analysis and modeling within the context 
of pediatric diabetes research.

Kullback-Leibler Divergence (KLD)
The Kullback-Leibler Divergence (KLD) is a fundamental measure from information theory that quantifies the dif-

ference between two probability distributions[17]. It is commonly used to evaluate the performance of generative 
models by measuring the "cost" or "loss of information" when approximating one probability distribution with 
another[36][46]. In this study, KLD is employed to assess how closely the synthetic datasets generated by the GAN and 
WGAN models match the distribution of the real pediatric diabetes data.

Mathematically, KLD between two discrete probability distributions P (real data) and Q (synthetic data) is defined 
as shown in Equation (8):

(8)𝐾𝐾𝐾𝐾(𝑃𝑃 || 𝑄𝑄) = ∑ 𝑃𝑃(𝑖𝑖)𝑙𝑙𝑙𝑙𝑙𝑙(𝑃𝑃(𝑖𝑖)
𝑄𝑄(𝑖𝑖))

𝑖𝑖
 

where:
 • P(i) represents the probability of event i in the real data distribution.
 • Q(i) represents the probability of event i in the synthetic data distribution.

In this study, both JSD and KLD are used to provide a comprehensive evaluation of the synthetic data quality. The 
combination of these two metrics offers a robust framework for assessing how effectively the generative models 
replicate the distributional characteristics of the real pediatric diabetes data. While JSD provides a global measure 
of similarity that is symmetric and bounded, making it suitable for general assessments of distributional overlap, 
KLD offers a more detailed perspective by identifying specific divergences where the synthetic data may differ 
significantly from the real data[47][48].

The implementation of KLD follows these steps:

 1. Data Preparation: Both the real and synthetic datasets are aligned to ensure they have matching feature
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  sets, with missing values removed to enable accurate comparison.
 2. Feature-wise KLD Calculation: For each feature, probability distributions are estimated by constructing
 normalized histograms. KLD is computed for each feature by comparing the real and synthetic distribu-
 tions, providing insight into specific areas where the synthetic data may diverge from the real data.
 3. Aggregation Across Features: The KLD values for all features are aggregated to derive an overall measure
 of divergence. This overall KLD score reflects the general fidelity of the synthetic dataset in representing
 the real data, considering all features collectively.

The use of both JSD and KLD in this study is justified by their complementary strengths. JSD is robust to extreme 
discrepancies and provides an overall measure of similarity, making it useful for confirming that the synthetic 
data generally aligns with the real data. KLD, on the other hand, offers a more granular assessment, pinpointing 
exact areas of divergence, which is crucial for refining the generative models. Together, these metrics ensure that 
the synthetic datasets generated are not only globally similar to the real data but also accurately capture its 
detailed characteristics, thereby validating their use for subsequent analysis and predictive modeling in pediatric 
diabetes research.

Predictive Model Evaluation
The quality of synthetic datasets is not only defined by their statistical alignment with real data but also by their 

practical utility in downstream machine learning tasks. To this end, a predictive model evaluation framework is 
incorporated as an additional metric for assessing the efficacy of the generated synthetic data. This method evaluates 
how well synthetic datasets support classification tasks, serving as a proxy for their utility in real-world applications.

The Random Forest algorithm is selected as the predictive model due to its inherent robustness, capacity to handle 
high-dimensional data, and ability to model complex feature interactions[49][50]. Random Forest operates as an 
ensemble of decision trees, where each tree is constructed using a bootstrap sample of the training data. At each 
decision node, a random subset of features is considered for splitting, introducing variability that enhances the gen-
eralizability of the model. The final prediction is obtained through majority voting (classification) or averaging 
(regression) across all trees, ensuring resilience to overfitting[51].

Mathematically, the Random Forest Classifier constructs T decision trees, where each tree t ϵ T minimizes the Gini 
impurity Ig for classification tasks, as shown in Equation (9).

𝐼𝐼𝑔𝑔  =  ∑ 𝑝𝑝𝑖𝑖(1 − 𝑝𝑝𝑖𝑖)
𝐶𝐶

𝑖𝑖=1
 (9)

Here, C denotes the number of classes, and pi, is the proportion of samples belonging to class i in the current node. 
This criterion guides the selection of optimal splits at each node, ensuring that the trees effectively capture the 
underlying patterns in the data[52].

By employing Random Forest, this study introduces a pragmatic approach to assess the synthetic data's relevance 
in predictive modeling. This framework complements statistical measures like Jensen-Shannon Divergence (JSD) 
and Kullback-Leibler Divergence (KLD) by providing a task-oriented perspective, ensuring a comprehensive evalu-
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Feature 
Name Reason for removal 

Location Lack of direct relevance to 
study goals StudyProject 

RecordID 

TABLE 4. Features Removed During Preprocessing.
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Metric Value 
Total number of records in the original dataset 834 

Records with at least one missing value 465 (55.4 %) 
Total number of records after imputation 834 

TABLE 5. Summary of Handling Missing Data.

ation of synthetic data quality.

RESULTS AND DISCUSSION

This section presents the findings from the experimental processes applied in this study and discusses their impli-
cations in the context of pediatric diabetes research. The analysis begins with the outcomes of data preprocessing 
steps, including feature filtering, management of data incompleteness, and data normalization. It then describes the 
application of generative models (GANs and WGANs) to create synthetic datasets. The quality and fidelity of these 
generated datasets are subsequently assessed using the Jensen-Shannon Divergence (JSD), Kullback-Leibler 
Divergence (KLD), and Predictive Model Evaluation metrics. Together, these approaches provide a comprehensive 
evaluation of the synthetic data, offering insights into their distributional similarity to real-world data and their 
utility in downstream machine learning tasks. This combination ensures a robust assessment of their potential 
applicability for future research.

Data Preprocessing 
Feature filtering 

The preprocessing of the dataset involves several critical steps to ensure its suitability for synthetic data generation 
and subsequent analysis. The original dataset comprises 834 records with 22 features, including various demo-
graphic, clinical, and biochemical variables relevant to pediatric diabetes research. To improve the dataset's quality 
and focus, three features are removed due to their lack of direct relevance to the study objectives, resulting in a 
refined dataset containing 19 features. The excluded features are detailed in Table 4.

Data Incompleteness 
Handling data incompleteness presents a substantial challenge in the preprocessing stage. Among the 834 records, 

462 (approximately 55.4 %) exhibit at least one missing value. To address this issue, an imputation strategy is 
employed, wherein missing values are replaced with the mean of their respective features. This approach maintains 
the dataset's integrity by preserving the total number of records and minimizing potential biases that could arise 
from data omission. Following this imputation process, the dataset retains all 834 records, as summarized in Table 
5.
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These preprocessing steps are vital in preparing the dataset for further analysis. They ensure that the data is clean, 
complete, and properly scaled, thereby enhancing the reliability and quality of the synthetic data generated.

Data normalization 
After the imputation of missing values, a normalization process is applied to ensure consistency in the scale of the 

dataset's features, which is essential for the effective training of generative models. A Min-Max normalization tech-
nique is utilized, scaling each feature to a range between 0 and 1. This standardization mitigates the risk of features 
with larger numerical ranges disproportionately influencing the model training process, thereby ensuring that all 
features contribute equitably to the generative modeling efforts.

Synthetic data generation and assessment 
While traditional data augmentation (DA) techniques have proven effective in domains such as images or text, 

where transformations like rotations or interpolations preserve the semantics of the original data, their application 
to clinical numerical data presents significant limitations. These techniques often fail to adequately capture the 
complex relationships between variables or maintain the clinical coherence required in healthcare datasets. For 
instance, Shorten and Khoshgoftaar[53] highlight how DA techniques can enhance model generalization in image 
classification but note their limited applicability to more structured and sensitive domains. Similarly, Choi et al.[54] 

demonstrate that GANs outperform DA in generating tabular clinical data by better preserving multidimensional 
relationships and ensuring consistency.

To address these challenges, this study employs Generative Adversarial Networks (GANs) and Wasserstein GANs 
(WGANs), which are better suited to model multidimensional distributions and generate synthetic data with higher 
fidelity and clinical consistency. This approach not only replicates the statistical properties of the original data but 
also preserves intrinsic relationships between features, a critical requirement in clinical research.

The use of Generative Adversarial Networks (GANs) and Wasserstein Generative Adversarial Networks (WGANs) is 
crucial for generating synthetic datasets that closely replicate the distributional characteristics of real pediatric 
diabetes data. Each model's effectiveness in producing realistic synthetic data is assessed based on its ability to 
preserve the statistical properties of the original dataset and its utility in downstream machine learning tasks. To 
achieve this, the quality of the synthetic data is evaluated using three complementary metrics: Jensen-Shannon 
Divergence (JSD), Kullback-Leibler Divergence (KLD), and the performance of a supervised classification model. 
Together, these methods provide a rigorous assessment of the statistical alignment and practical applicability of the 
synthetic datasets, ensuring their relevance for research and predictive modeling.

Evaluation of GAN-Generated Synthetic Data 
The Generative Adversarial Network (GAN) is utilized to create a synthetic dataset designed to closely replicate the 

distributional characteristics of the original pediatric diabetes data. A synthetic dataset consisting of 417 records, 
representing 50 % of the original dataset's size, is generated to maintain a balance between capturing the complex-
ity of the data and ensuring a robust comparison between the real and synthetic datasets.

The effectiveness of the GAN in generating realistic synthetic data is evaluated through a comparative analysis of 
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the global distributions of the real and GAN-generated data. Figure 3 illustrates this comparison by aggregating the 
normalized values of all features into a single composite measure for each record, providing a comprehensive view 
of the similarity between the two datasets. This composite measure summarizes the overall alignment between the 
datasets, capturing both the central tendencies and variability of the original data.

In Figure 3, the "Aggregated Feature Value" represents a combined metric derived by summing all normalized fea-
ture values for each record, while the probability density indicates the relative frequency of these aggregated values 
across the dataset. The curve corresponding to the real dataset is depicted in blue, while the red curve represents 
the GAN-generated dataset. The visualization demonstrates that the synthetic data generated by the GAN aligns well 
with the general shape of the real data distribution, capturing key patterns and trends, particularly in the central 
regions where the curves overlap closely.

Discrepancies are observed in the tails of the distribution, where the GAN fails to replicate less frequent and 
extreme values. This limitation arises from the training instability commonly associated with traditional GAN archi-
tectures, particularly when modeling complex, high-dimensional data. While the GAN successfully reproduces the 
dominant statistical features of the real dataset, these deviations highlight its reduced ability to capture rare pat-
terns that require more stable and fine-tuned training processes.

To further quantify the similarity between the real and GAN-generated data, two divergence metrics are employed: 
the Jensen-Shannon Divergence (JSD) and the Kullback-Leibler Divergence (KLD). The values of these metrics, pre-
sented in Table 6, offer a detailed view of the effectiveness of the GAN in approximating the real data.Revista Mexicana de Ingeniería Biomédica 

 
 

 

 

Metric Value 
Jensen-Shannon Divergence (JSD) 0.482 
Kullback-Leibler Divergence (KLD) 1.617 

TABLE 6. Divergence Metrics for GAN-Generated Synthetic Data.

FIGURE 3. Global Distribution Comparison Between Real and GAN-Generated Data.
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 As shown in Table 6, the Jensen-Shannon Divergence (JSD) value of 0.482 indicates a substantial degree of simi-
larity between the distributions of the real and GAN-generated data. The relatively low JSD suggests that the GAN 
effectively captures the overall structure and dominant statistical features of the original dataset. This result con-

TABLE 7. Classification Performance Comparison between Real and GAN-Generated Synthetic Data.
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Dataset Accuracy Precision Recall F1 Score ROC AUC 
Real data 0.98 0.97 0.97 0.97 0.98 

Synthetic data 0.94 0.93 0.93 0.93 0.94 

firms that the global patterns, including central tendencies and frequent values, are well-represented in the syn-
thetic data.

The Kullback-Leibler Divergence (KLD) value of 1.617 provides additional insight into the alignment of the two 
distributions. While this value remains relatively low, it is slightly higher than the JSD, indicating that discrepancies 
are more pronounced in regions with lower probabilities, such as the tails of the distribution. This reflects the GAN's 
difficulty in modeling less frequent or extreme values, which aligns with the limitations observed visually in Figure 
3. Together, these divergence metrics demonstrate that while the GAN-generated data closely approximates the real 
data, there is room for improvement in capturing rare patterns and achieving a more precise representation of the 
complete data distribution.

To complement this evaluation, the quality of the GAN-generated synthetic data is also assessed through its utility 
in a supervised learning context. A Random Forest classifier is trained separately on the real dataset and the GAN-
generated synthetic dataset, using a binary classification task where the target variable indicates the presence or 
absence of diabetes. The feature Insulin (labeled as Insulin_ugml in the dataset) is used to define this target variable, 
as insulin levels are clinically recognized as a key indicator for diabetes diagnosis. Based on medical thresholds, 
records with insulin levels greater than 25 μU/mL are labeled as diabetic (1), while others are labeled as non-diabetic 
(0).

Key metrics, including accuracy, precision, recall, F1-score, and ROC AUC, are computed to evaluate the perfor-
mance of the model in each case. The results, summarized in Table 7, provide a point of comparison to understand 
how well the synthetic data supports predictive modeling relative to the real data.

The performance metrics in Table 7 show that the GAN-generated synthetic data achieves strong and consistent 
results across all evaluated metrics. Although a slight drop of approximately 4 % is observed in accuracy, precision, 
recall, and F1-score compared to the real data, this difference is within acceptable limits for synthetic datasets. The 
marginal decline reflects the challenge of fully replicating the nuanced variability of real-world data, particularly in 
capturing less frequent patterns or edge cases.

The relatively high precision and recall values indicate that the synthetic data retains the critical predictive features 
necessary for identifying positive cases while effectively minimizing false positives. This balance is essential for 
clinical applications, where both sensitivity (recall) and specificity (precision) are critical for reliable predictions. 
Furthermore, the high ROC AUC score confirms that the model trained on GAN-generated data maintains a strong 
discriminative capability, demonstrating its ability to distinguish between classes effectively.
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These findings highlight that, despite minor discrepancies, the GAN-generated data successfully preserves the 
underlying relationships and predictive features of the real dataset. This validates the GAN's practical utility for 
training machine learning models in scenarios where real data are scarce or access is restricted, offering a robust 
alternative for enhancing predictive modeling in pediatric diabetes research.

However, while these results are promising, they also reflect the inherent challenges of working with pediatric 
data, which tend to be highly variable due to the ongoing growth and development of children. The diversity in 
growth rates, physiological changes, and individual responses to health conditions can result in complex patterns 
that are difficult to replicate fully with synthetic models. These characteristics contribute to the observed differ-

FIGURE 4. Global Distribution Comparison Between Real and WGAN-Generated Data.

ences between the real and synthetic data and underscore the need for careful consideration when generating syn-
thetic datasets in this context.

Overall, the combined analysis of the visual comparison, divergence metrics, and supervised learning performance 
suggests that the GAN is highly effective in generating synthetic data that not only closely matches the general dis-
tribution of the real data but also retains the critical predictive features necessary for accurate classification. The 
comparable performance of the Random Forest classifier on both the real and synthetic datasets reinforces the 
validity of the synthetic data, demonstrating that it encapsulates the essential patterns and relationships required 
for supervised learning tasks. This comprehensive evaluation highlights the potential of GAN-generated data to 
serve as a reliable alternative for training machine learning models when real data is scarce or inaccessible.

Evaluation of WGAN-Generated Synthetic Data 
The Wasserstein Generative Adversarial Network (WGAN) is the second method used for generating synthetic data 

in this study, aimed at producing a dataset that closely replicates the characteristics of the original pediatric diabetes 
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data. The WGAN model generates a synthetic dataset of 417 records, mirroring the size used in the GAN-generated 
dataset to maintain consistency in comparisons.

The performance of the WGAN is evaluated by comparing the global distributions of the real and WGAN-generated 
data, as shown in Figure 4. As in the GAN analysis, the normalized values of all features are aggregated into a single 
composite measure for each record, allowing a direct comparison of the overall alignment between the datasets. Revista Mexicana de Ingeniería Biomédica 

 
 

 

 

Metric Value 
Jensen-Shannon Divergence (JSD) 0.480 
Kullback-Leibler Divergence (KLD) 1.584 

TABLE 8. Divergence Metrics for WGAN-Generated Synthetic Data.

This method provides a comprehensive view of how well the WGAN captures the underlying structure and variabil-
ity of the real data.

In Figure 4, the "Aggregated Feature Value" represents a combined metric derived by summing all normalized fea-
ture values for each record, while the probability density indicates the relative frequency of these aggregated values 
across the dataset. The curve corresponding to the real dataset is depicted in blue, while the red curve represents 
the WGAN-generated dataset. The visualization shows that the WGAN-generated data aligns closely with the real 
data distribution, particularly around the central peak and mid-range values, where the curves exhibit almost per-
fect overlap. This alignment indicates that the WGAN successfully captures the most frequent and dominant statis-
tical patterns in the data, closely approximating the global structure observed in the real dataset.

Compared to the traditional GAN, the WGAN demonstrates a significant reduction in discrepancies at the tails of 
the distribution, where less frequent and extreme values occur. This improvement reflects the enhanced stability of 
the WGAN training process, which allows it to model complex patterns with greater accuracy. By reducing devia-
tions in the tails, the WGAN effectively retains both dominant and rare features, preserving the variability essential 
for realistic synthetic data generation. This capacity makes the WGAN-generated data not only a reliable represen-
tation of the real dataset but also a valuable resource for downstream machine learning tasks, particularly in scenar-
ios with limited real data availability.
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Dataset Accuracy Precision Recall F1 Score ROC AUC 
Real data 0.98 0.97 0.97 0.97 0.98 

Synthetic data 0.96 0.95 0.95 0.95 0.97 

TABLE 9. Classification Performance comparison between Real and WGAN-Generated Synthetic Data.

To further quantify the similarity between the real and WGAN-generated data, the same divergence metrics used 
for the GAN evaluation, the Jensen-Shannon Divergence (JSD) and the Kullback-Leibler Divergence (KLD), are cal-
culated. The results, presented in Table 8, provide a detailed assessment of the WGAN's performance.

As shown in Table 8, the Jensen-Shannon Divergence (JSD) value of 0.480 is slightly lower than the value obtained 
with the GAN (0.482), indicating a marginal improvement in the similarity between the WGAN-generated and real 
data distributions. This lower JSD suggests that the WGAN more effectively captures the global statistical structure 
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of the dataset, aligning closely with the dominant patterns observed in the real data.

The Kullback-Leibler Divergence (KLD) value of 1.584 is also marginally reduced compared to the GAN (1.617), 
highlighting a better representation of less frequent and extreme values in the tails of the distribution. This improve-
ment reflects the enhanced stability of the WGAN training process, which enables it to model complex, low-proba-
bility patterns with greater accuracy. Collectively, these results demonstrate that the WGAN outperforms the tradi-
tional GAN in both global alignment and in capturing subtle variations, making it a more reliable approach for gen-
erating high-fidelity synthetic data.

Similar to the evaluation conducted for GAN, the quality of the WGAN-generated synthetic data is assessed through 
its utility in a supervised learning context. This analysis follows the same approach as the previous section, where a 
Random Forest classifier is trained on both the real dataset and the WGAN-generated synthetic dataset to predict 
the presence or absence of diabetes based on insulin levels. Key metrics such as accuracy, precision, recall, F1-score, 
and ROC AUC are calculated to evaluate the model's performance on both datasets. The results are summarized in 
Table 9.

As shown in Table 9, the Random Forest classifier trained on WGAN-generated synthetic data achieves perfor-
mance metrics that are closely aligned with those obtained using real data. The accuracy, precision, recall, F1-score, 
and ROC AUC for the WGAN-generated data show only a slight decrease of approximately 2 % compared to the real 
dataset. This minor drop highlights the ability of the WGAN to generate high-fidelity synthetic data that preserves 
critical predictive features and relationships.

When compared to the GAN-generated data (Table 7), the WGAN demonstrates improved performance across all 
metrics, particularly in recall and ROC AUC. The slight enhancements in recall indicate that the WGAN-generated 
data better captures edge cases and less frequent patterns, reducing false negatives more effectively. Additionally, 
the ROC AUC value of 0.97 for the WGAN surpasses the 0.94 obtained with the GAN, showcasing the superior dis-
criminative power of the WGAN-generated data.

The WGAN’s ability to produce synthetic data with enhanced stability and improved representation of subtle and 
less frequent patterns demonstrates its superiority over traditional GANs. By addressing the limitations observed in 
earlier models, the WGAN-generated data offer a reliable and realistic alternative for training machine learning mod-
els. This is particularly valuable in pediatric research, where access to real-world datasets is often limited, and the 
quality of synthetic data plays a crucial role in enabling robust predictive modeling.

The results obtained in this study, particularly the superior performance of Wasserstein Generative Adversarial 
Networks (WGANs) compared to traditional GANs, align with findings from other research on synthetic data gener-
ation in healthcare. Goncalves et al.[55] conducted a thorough examination of synthetic data generation techniques 
for cancer patient data, focusing on methods such as probabilistic models, Bayesian networks, and GANs. Their 
results demonstrated the potential of these techniques to approximate real datasets, achieving a Kullback-Leibler 
(KL) divergence score of 0.47 for cancer datasets, which is comparable to the results obtained in this study for pedi-
atric diabetes data (KL divergence of 1.584 for WGAN-generated data). Although the divergence in this study is 
slightly higher, it is crucial to consider the unique challenges posed by pediatric data. Growth and developmental 
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variability introduce significant complexity in modeling, making pediatric data inherently more difficult to capture 
accurately.

Other studies in synthetic healthcare data generation also reflect similar trends, particularly in the challenges of 
handling complex datasets. Xu et al.[56] applied Conditional GANs (CTGAN) to generate synthetic tabular data and 
found that CTGAN outperforms Bayesian networks and other GAN-based models on several real-world datasets. 
Although their focus was not on pediatric data, their results highlight the effectiveness of using conditional GANs 
for generating structured data patterns. However, their work, like many others, focuses primarily on adult datasets, 
where the variability present in pediatric populations is not a significant factor. This difference underscores the need 
for models capable of adapting to more dynamic physiological conditions, such as those found in children with dia-
betes, where growth and development create a more challenging environment for accurate synthetic data genera-
tion.

While the generation of synthetic healthcare data has advanced significantly, much of the focus has been on adult 
datasets, with limited attention paid to pediatric populations. This study addresses a significant gap in the literature 
by applying advanced generative models, specifically GANs and WGANs, to pediatric diabetes data. Pediatric data-
sets present unique challenges due to the high variability in physiological characteristics as children grow and 
develop. This inherent variability complicates the modeling process and requires more sophisticated approaches to 
accurately reflect the underlying data distributions. To address these complexities, WGANs were employed due to 
their stability in training and ability to handle the nuanced data patterns found in pediatric populations. Moreover, 
the use of Jensen-Shannon Divergence (JSD) and Kullback-Leibler Divergence (KLD) as evaluation metrics ensures 
that the generated datasets maintain the essential statistical properties necessary for predictive modeling.

To complement the evaluation of these divergence metrics, the quality of the WGAN-generated synthetic data was 
further assessed through its utility in a supervised learning context. A Random Forest classifier, trained on both real 
and WGAN-generated synthetic data, revealed that the synthetic data maintained essential predictive features, with 
classification performance metrics (accuracy, precision, recall, F1 score, and ROC AUC) comparable to the real data. 
These results demonstrate that the WGAN-generated data can be effectively used in predictive models for pediatric 
diabetes, showing that it not only captures the global distribution of the real data but also retains the critical features 
required for accurate classification.

By generating high-quality synthetic datasets for pediatric diabetes, this work can significantly enhance predic-
tive models and personalized treatment approaches, addressing the critical scarcity of real-world pediatric datasets 
in this domain. To our knowledge, no studies to date have applied generative models specifically to pediatric data 
in the context of diabetes research, making this contribution particularly novel.

Limitations and adaptability 
While this study demonstrates the successful use of GANs and WGANs to generate high-quality synthetic datasets 

for pediatric diabetes research, certain limitations must be acknowledged. The quality and representativeness of the 
generated synthetic data depend heavily on the characteristics of the input dataset. Small sample sizes, incomplete 
data, or datasets with imbalanced classes may hinder the models’ ability to capture rare or subtle patterns accu-
rately. This limitation is particularly significant in pediatric datasets, where inherent variability due to growth, 
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development, and physiological changes introduces additional challenges. Ensuring high-quality input data remains 
a critical prerequisite for achieving reliable synthetic data generation.

Another limitation relates to the specificity of the current methodology to pediatric diabetes data. Although GANs 
and WGANs are generalizable techniques, their application to other datasets or domains requires adaptation. For 
instance, datasets with different structures, such as high-dimensional multi-omics data or longitudinal patient 
records, may require modifications to the preprocessing pipeline, including tailored strategies for handling missing 
data, normalization techniques, or feature selection. Likewise, adjustments to the model architectures may be nec-
essary to optimize performance for datasets with greater complexity or variability.

Despite these limitations, the proposed methodology provides a solid foundation for generating synthetic datasets 
in healthcare and beyond. Future research can explore its adaptability to other medical conditions, larger datasets, 
and alternative domains, such as genomics or environmental monitoring, where data scarcity is also a significant 
challenge. Additionally, further evaluation across diverse datasets could validate the generalizability of this 
approach, ensuring its broader applicability in machine learning-driven predictive modeling.

CONCLUSIONS

This study explored the use of Generative Adversarial Networks (GANs) and Wasserstein GANs (WGANs) to gener-
ate synthetic datasets for pediatric diabetes research, addressing critical data scarcity in this domain. The dual 
approach combining statistical evaluation metrics and supervised classification validated the fidelity and practical 
utility of the synthetic data. By employing Jensen-Shannon Divergence (JSD) and Kullback-Leibler Divergence 
(KLD), the statistical alignment of synthetic datasets with real data was confirmed. Specifically, the GAN achieved a 
JSD of 0.482 and a KLD of 1.617, while the WGAN demonstrated superior performance with a JSD of 0.480 and a 
KLD of 1.584, indicating improved stability and fidelity in capturing complex data patterns.

The use of a Random Forest classifier to assess performance on classification tasks further demonstrated the capac-
ity of synthetic datasets to retain predictive features essential for machine learning applications. The model trained 
on real data achieved an accuracy of 0.98, while the GAN-generated data attained 0.94, and the WGAN-generated 
data achieved 0.96, with similarly high scores for precision, recall, F1 score, and ROC AUC. These results highlight 
the WGAN's enhanced ability to approximate real dataset performance and reinforce its suitability for predictive 
modeling.

The results revealed that both GAN and WGAN methodologies successfully captured the complex distribution of 
pediatric diabetes data, with WGANs offering enhanced stability and improved fidelity. These findings are consis-
tent with the theoretical advantages of the Wasserstein distance in mitigating common challenges in GAN training. 
Classification performance metrics further underscored the reliability of WGAN-generated data, which achieved 
metrics close to real data across accuracy, precision, recall, F1 score, and ROC AUC.

Beyond technical evaluations, this work contributes significantly by advancing the application of generative mod-
els in pediatric diabetes—a domain characterized by unique challenges, such as high variability in physiological 
characteristics and ethical constraints in data collection. Unlike prior studies that focused primarily on adult data-
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sets or statistical metrics, this study introduces a comprehensive evaluation framework encompassing both distri-
butional similarity and predictive utility.

Future work should aim to refine generative architectures and incorporate domain-specific knowledge to address 
the inherent complexities of pediatric datasets more effectively. Potential directions include exploring alternative 
loss functions, integrating temporal and longitudinal data, and developing hybrid models that merge generative 
techniques with rule-based systems. Expanding these methodologies to other pediatric conditions could further 
establish their relevance in healthcare research, paving the way for improved diagnostic tools and personalized 
treatment strategies.

This study demonstrates the transformative potential of synthetic data in overcoming real-world constraints, 
enhancing AI-driven solutions for pediatric diabetes management, and supporting broader applications in medical 
research. By rigorously validating synthetic datasets' fidelity and usability, this work lays the foundation for more 
robust and generalizable machine learning applications in healthcare.
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