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Age-related macular degeneration (AMD) is a progressive eye disease that primarily affects individuals over 50 years old. 

Among the AMD variants, wet is the most severe, as it represents the advanced stage of dry AMD and can cause severe 

vision loss if not detected in time. This study focuses on the development of WAMDS2, a web module designed to identify 

characteristics associated with Wet AMD, facilitating early and accurate detection. To achieve this, a literature review was 

conducted on AMD and advanced techniques in computer vision and deep learning. The proposed model integrates Swin 

Transformer V2, a vision transformer implemented in PyTorch, to analyze fundus images and classify the different stages 

of the disease. The system’s performance was evaluated using metrics such as accuracy, recall, and F1-Score. An accuracy 

of 84.76 % was achieved on the test set, suggesting its feasibility in clinical settings. The obtained results highlight the 

potential of WAMDS2 in ophthalmology and computer vision, demonstrating its capability to enhance automated 

diagnosis and patient care. 
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La degeneración macular asociada con la edad (DMAE) es una enfermedad ocular progresiva que afecta principalmente a 

personas mayores de 50 años. Entre sus variantes, la DMAE húmeda es la más grave, pues representa la evolución 

avanzada de la DMAE seca y puede causar una pérdida visual severa si no se detecta a tiempo. Este estudio se centra en el 

desarrollo de WAMDS2, un módulo web diseñado para identificar características asociadas con la DMAE húmeda, lo que 

facilita una detección temprana y precisa. Para ello, se llevó a cabo una revisión de literatura sobre la DMAE y técnicas 

avanzadas de visión por computadora y aprendizaje profundo. El modelo propuesto integra el Swin Transformer V2, un 

transformador de visión implementado en PyTorch, para analizar imágenes de fondo de ojo y clasificar los diferentes 

estadios de la enfermedad. El rendimiento del sistema se evaluó mediante métricas como precisión, sensibilidad y F1-

Score, logrando una precisión del 84.76 % en el conjunto de prueba, lo que sugiere su viabilidad en entornos clínicos. Los 

resultados obtenidos resaltan el potencial de WAMDS2 en el ámbito de la oftalmología y la visión por computadora, 

evidenciando su capacidad para mejorar el diagnóstico automatizado y la atención al paciente. 
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INTRODUCTION 
 

Age-related macular degeneration (AMD) is a progressive and degenerative retinal disorder that primarily affects 

individuals over the age of 50, representing one of the leading causes of vision loss globally[1]. As life expectancy 

continues to rise, the prevalence of AMD is expected to grow, posing significant challenges to healthcare systems 

worldwide. Current estimates indicate that approximately 30 % of individuals over the age of 70 are affected by 

AMD, with notable variations across populations and epidemiological studies[2]. This condition significantly impacts 

the quality of life of those affected, leading to difficulties in daily activities such as reading, driving, and recognizing 

faces[3]. Furthermore, the economic burden of AMD is substantial, encompassing direct medical costs, loss of 

productivity, and the need for long-term care in advanced cases[4]. 

 

AMD is categorized into two types: (1) dry AMD and (2) Wet AMD. Dry AMD is characterized by drusen deposits, 

melanin redistribution in the retinal pigment epithelium (RPE), and geographic atrophy, leading to gradual vision 

loss[5]. Wet AMD is characterized by choroidal neovascularization (CNV), where new blood vessels from the choroid 

penetrate the RPE and Bruch’s membrane, extending beneath the retina[6]. Wet AMD is more aggressive and causes 

most severe vision loss cases. Despite advancements in imaging technologies, diagnosing AMD at early stages 

remains challenging due to subtle biomarkers and overlapping characteristics between disease subtypes[7]. Recent 

advances in artificial intelligence (AI) and computer vision offer opportunities to tackle these challenges. Image-

based object detection algorithms have shown transformative potential in medical imaging[8]. Transformers, 

originally developed for natural language processing, have emerged as a leading approach for image analysis, 

outperforming traditional Convolutional Neural Networks (CNNs) in several tasks[9]. These architectures are 

especially effective in handling large, high-dimensional datasets, making them ideal for analyzing retinal imaging 

data[10]. The Swin Transformer V2 (Swin 2) is one of the most advanced Transformer models, demonstrating strong 

capabilities in object detection, feature extraction, and classification, making it an appropriate choice for AMD-

related research[11]. 

 

Current diagnostic methods like Optical Coherence Tomography (OCT) and fluorescein angiography are critical but 

have limitations. OCT, although effective for imaging, struggles to detect early-stage Wet AMD, and is expensive and 

not widely available. Fluorescein angiography is invasive, and while it helps visualize advanced neovascularization, 

it’s less effective for early detection and non-vascular abnormalities. These challenges highlight the need for non-

invasive, cost-effective, and early detection solutions. Transformers, particularly Swin 2, was selected due to its 

unique ability to handle visual data through its hierarchical shifted windowing mechanism. This feature allows the 

model to capture spatial relationships at different scales, which is particularly useful in ophthalmic image 

segmentation and classification tasks, where retinal structures have features at various resolutions. Swin 

Transformer V2 outperforms traditional convolutional neural networks (CNNs) by enabling better segmentation of 

pathological patterns in fundus images, resulting in higher diagnostic accuracy compared to previous models. This 
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ability to adapt to different image scales is crucial for the early detection of Wet AMD, where pathological patterns 

are more subtle and require a model capable of analyzing fine details at the pixel level. 

 

The primary contribution of this study is the development of a web-based module for Wet AMD detection using the 

Swin Transformer V2 architecture. This innovative approach combines state-of-the-art deep learning techniques 

with practical, real-world applicability. Unlike previous studies, WAMDS2 (Web-based AMD Detection System) not 

only improves the diagnostic accuracy by leveraging the Swin 2 model but also introduces a scalable, non-invasive, 

and cost-effective solution for clinical settings. In this study, we focus on the early detection of Wet AMD. Although 

the model classifies five stages of the disease, the primary objective is to detect early-stage AMD, particularly the 

transition from No AMD to Mild AMD, which is crucial for timely medical intervention. Early detection is vital as it 

allows for treatment to slow the progression of the disease before irreversible damage occurs. 

 

The remainder of this paper is organized as follows: Section 2 reviews the state of the art in AMD detection, 

highlighting the limitations of current methodologies. Section 3 describes the WAMDS2 architecture and its layers, 

including Presentation, Classification, and Data Persistence. Section 4 outlines the WAMDS2 workflow, from 

uploading fundus images to obtaining diagnostic results. Section 5 details the materials and methods, including 

fundus image acquisition, Swin Transformer V2 model training, and the development of the WAMDS2 web 

application. Section 6 presents a case study where a family doctor uses the DiFO ophthalmoscopy adapter to capture 

images, upload them to WAMDS2, and perform AMD detection. Section 7 discusses the results, including the model’s 

classification accuracy (84.76 %), comparisons with prior studies, and its clinical applicability. Finally, Section 8 

concludes, highlighting the importance of WAMDS2 in early AMD detection and its potential impact on 

ophthalmology. 

 

In the literature, there are reported several researches related to our initiative. Most of them use approaches such 

as CNNs while others, although to a lesser extent, make use of vision transformers for the detection of visual disease 

by analyzing different types of eye images such fundus, Optical Coherence Tomography (OCTs), Color Fundus 

Photography (CFP), to mention but a few. In this section, we summarize in descending order several initiatives 

published in the last five years, to identify the main differences between them and our work. 

 

An innovative deep learning method for the automated detection and quantification of atrophic features associated 

with macular atrophy (MA) in wet age-related macular degeneration (AMD) using Optical Coherence Tomography 

(OCT) was proposed by Wei W. et al.[12]. Although the model effectively identified atrophic morphological changes, 

it faced challenges due to annotation complexity and feature overlap, such as subretinal fluid, pigment epithelial 

detachment, and subretinal hyperreflective material. Despite these limitations, the model achieved an average Dice 

similarity coefficient (DSC) of 0.706, precision of 0.834, and sensitivity of 0.615, demonstrating its potential for early 

detection and monitoring of MA progression in Wet AMD. This method offers significant implications for early 
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diagnosis and clinical monitoring, though future research should aim to incorporate additional features of Wet AMD 

for broader applicability. A hybrid approach combining a fully dense convolutional neural network (FD-CNN) and a 

deep support vector machine (D-SVM) was presented in [13], for retinal disease classification in OCT images. This 

hybrid model outperformed other methods, such as D-KNN, in precision, sensitivity, specificity, and F1 scores on 

datasets like UCSD and Duke. The integration of explainable AI techniques, such as LIME, enhanced transparency, 

making the model a promising tool for early diagnosis and effective treatment of retinal disorders. On the other hand, 

a novel framework combining a scale-adaptive autoencoder with a ResNet50-based classifier for early detection of 

AMD was proposed by El-Den N. et al.[14]. This model effectively distinguished normal retinas from various AMD 

stages, including intermediate AMD, geographic atrophy (GA), and Wet AMD, achieving superior accuracy compared 

to earlier methods. This innovative approach demonstrated significant potential for integration into existing retinal 

imaging systems for non-invasive and efficient AMD detection. Similarly, to [13][14] in [15], the Conv-ViT model 

introduced a hybrid feature extraction approach by integrating Convolutional Neural Networks (CNNs) and 

transformers for improved detection of retinal diseases. Using pre-trained models like Inception-V3 and ResNet-50, 

Conv-ViT achieved high F1 scores for diabetic macular edema (DME) and demonstrated enhanced precision in 

drusen classification. The study emphasized the benefits of combining texture and shape features, making Conv-ViT 

a promising tool for accurate retinal disease detection. The initiative of Lopez-Varela E. et al.[16] consisted of a 

computer-aided diagnostic approach incorporating 3D visualization for rapid identification of Wet AMD. Using a CNN 

trained on specific OCT datasets, the methodology achieved precise segmentation of fluid accumulations associated 

with AMD. Data augmentation and transfer learning further enhanced model robustness, making it a valuable tool 

for clinical diagnostics and workload optimization.  

 

The automated application of DARC (Detection of Apoptosing Retinal Cells) technology with CNNs to predict 

subretinal fluid (SRF) formation in Wet AMD patients presented by Corazza P. et al.[17] is an interesting initiative that 

outperformed clinical specialists, achieving 94 % sensitivity and demonstrating DARC’s potential as a biomarker for 

early retinal angiogenic activity. SAE-wAMD, an advanced CNN model with self-attention mechanisms for detailed 

classification of Wet AMD subtypes using OCT was presented by Haigong E. et al.[18]. The SAE-wAMD model 

outperformed standard CNNs and clinical expertise in detecting neovascular AMD and PCV, achieving higher F1 

scores and demonstrating robust lesion detection capabilities. SAE-wAMD offers significant promise for improving 

clinical diagnostics and enhancing the accuracy of ophthalmic disease classification. A multi-modal CNN (MM-CNN) 

was introduced in [19], combining OCT and color fundus photography (CFP) data for enhanced AMD classification. 

Incorporating GAN-based image synthesis and loose pairing techniques, the model demonstrated superior accuracy 

and sensitivity for detecting Wet AMD and PCV compared to single-modality methods. This approach emphasizes 

the advantages of multi-modal data integration in retinal disease classification. Similarly, to [14], a ResNet50 model 

pre-trained on ImageNet and the Kermany dataset achieved 96.56 % accuracy in classifying dry and Wet AMD was 

presented in [20], which involved transfer learning and batch normalization techniques significantly improved model 

performance, demonstrating the potential of automated retinal image analysis for clinical applications. In [21], the 

research was focused on the early identification of eye diseases such as macular degeneration, cataracts, diabetes, 



Jorge Ernesto Gonzalez Diaz et al. WAMDS2: Early detection of wet AMD using Swin Transformer V2 6 

 

glaucoma, hypertension, and myopia, which can lead to vision loss if not diagnosed in time. Such research proposed 

a deep learning-based approach utilizing Vision Transformer (ViT) architectures to classify fundus images, achieving 

greater classification reliability compared to previous methods. The results showed that the Vision Transformer-14 

model achieved an F1-score of 83.49 %, with a sensitivity of 84 % and a precision of 83 %, indicating a significant 

improvement. The ODIR (Ocular Disease Intelligent Recognition) dataset was used, along with image augmentation 

techniques to expand the dataset. The methodology included custom transformer encoder blocks with multi-head 

attention. The study concluded that Vision Transformers enhance the classification of eye diseases and suggested 

future work to optimize these architectures, apply them to other types of medical images, and integrate more clinical 

data to improve diagnostic accuracy. A U-Net-based model with ResNeSt blocks and spatial clustering pyramids for 

automated segmentation of choroidal neovascularization in OCTA images was developed by Feng W. et al.[22]. Their 

model significantly outperformed traditional methods, emphasizing the role of AI and deep learning in enhancing 

diagnostic precision and treatment planning for AMD. Similarly to [15][16][18][20], in [23], cutting-edge CNN architectures, 

including ResNet18 and InceptionV3, were employed for automated retinal disease detection. InceptionV3 achieved 

the highest accuracy (99.79 %), underscoring the effectiveness of deep learning models in improving diagnostic 

precision. Wu M. et al.[24] examined various machine learning models for AMD classification, with ConvNeXT 

achieving the best performance (96.89 % accuracy). Data augmentation had a crucial role in enhancing model 

accuracy, emphasizing ConvNeXT's potential for clinical deployment. In [25] explored AI-driven risk stratification for 

AMD progression. Deep learning algorithms outperformed clinical experts in predicting disease progression and 

identifying patients at high risk for advanced AMD, highlighting the transformative impact of AI in ophthalmology. A 

deep learning-based method using AlexNet and ResNet for automated classification of dry and Wet AMD was 

introduced in [26]. ResNet outperformed AlexNet, achieving an AUC of 94 % for dry AMD and 63 % for Wet AMD, 

highlighting its effectiveness for precise and timely diagnosis. Such study emphasized the critical role of deep CNNs 

in advancing ophthalmological care and disease management. In [27], the effectiveness of CNN and ViT-based Systems 

for detecting glaucoma in fundus images was evaluated. The authors tested various CNN architectures, such as 

VGG19, ResNet50, InceptionV3, and Xception, along with ViT variants like Swin Transformer and Twins-PCPVT, as 

well as hybrid systems like CaiT, DeiT (Data-efficient image transformer), CeiT (Convolution-enhanced image 

transformer), and ConViT (Convolutional Vision Transformer), and the ResMLP architecture. In [28], a method for 

classifying retinal diseases using optical coherence tomography (OCT) images was introduced, utilizing a Swin-Poly 

Transformer network. The findings indicated that this method facilitated accurate and efficient retinal classification, 

highlighting the value of artificial intelligence in ophthalmic diagnostics and the potential of ViT networks in this 

field. Finally, in [29], a study focused on the classification of glaucomatous eye conditions using ViT models in full and 

cropped fundus images of the optic disc. They evaluated ViT architectures such as Swin, CaiT, crossViT, XciT, ResMlp, 

and DeiT, both individually and in ensembles. In addition to glaucoma, they addressed other ophthalmic diseases 

such as diabetes, cataracts, hypertension, pathological myopia, and other anomalies. Table 1 it presents a 

comparative analysis of the articles related to the proposed study, highlighting aspects such as medical condition, 

architecture, image type, and accuracy. 

 



REVISTA MEXICANA DE INGENIERÍA BIOMÉDICA | VOL. 47 | NO. 1 | SPECIAL ISSUE ON TECHNOLOGICAL ADVANCES AND INNOVATION IN HEALTH 7 

 

TABLE 1. Comparative analysis of the articles related to the proposed study. 

Author Eye disease Architecture Image type Accuracy 

Wei W et al.[12] Wet AMD U-net OCT 83.40 % 

Kayadibi, İ et al.[13] 
Wet AMD Diabetic 

Macular Edema (DME) 
FD-CNN OCT 99.60 % 

El-Den N. et al.[14] 
Wet AMD 
Dry AMD 

ResNet50 
Color Retinal Fundus 

Images 
96.2 % 

Dutta et al.[15] 
Wet AMD 
Dry AMD 

Conv-ViT: 
Inception-V3 

ResNet-50 
OCT 94.47 % 

López-Varela E. et al.[16] Wet AMD U-net OCT 83.40 % 

Corazza P et al.[17] Wet AMD U-net OCTA 98.91 % 

Haigong E. et al.[18] 
Wet AMD 
Dry AMD 

SAE-VGG16 OCT 92.56 % 

Wang, W. et al.[19] Wet AMD 
MM-CNN (multi-modal 

CNN) 
OCT + CFP Not specified 

Abdullahi. et al.[20] Wet AMD U-net OCT 
94.92 % 
96.03 % 

S. D. Gummadi. et al.[21] 
AMD, cataracts, diabetes, 
glaucoma, hypertension, 

and myopia 
Vision Transformer (ViT) Fundus Images 83.18 % 

Feng W. et al.[22] 
Wet AMD 
Dry AMD 

ResNet50 OCT 96.56 % 

Haq, A. et al.[23] Retinal diseases 
ResNet18, InceptionV3, 

ResNext50 
OCT 

 
99.80 % 

Wu M. et al.[24] Wet AMD DARC-CNN 
OCT 

DARC 
 

97.00 % 

Yim, J. et al.[25] Wet AMD 
Models based on three-

dimensional (3D) 
OCT Not specified 

A. Serener. et al.[26] 
Wet AMD 
Dry AMD 

AlexNet 
ResNet 

OCT 
94.00 % 
63.00 % 
96.50 % 

Alayon S. et al.[27] Glaucoma 
ViT, Swin Transformer, 

TwinsPCPVT, CaiT 
Fundus images 

81.67 % 
81.67 % 
84.17 % 

He J. et al.[28] 

Diabetic retinopathy, 
Diabetic macular edema, 

Glaucoma, Ocular 
abnormalities 

ViT Swin Transformer OCT 99.80 % 

Wassel M.et al.[29] 
Glaucoma Cataracts, 
Pathological Myopia 

Cait, crossViT, XciT, 
ResMlp, DeiT, ViT 

Fundus images 95.40 % 

Our Study Wet AMD Swin Transformer V2 Fundus images 84.76 % 

 

The comparison presented highlights that CNN architectures are the leading choice for analyzing Wet AMD, with U-

net and ResNet50 being the most employed in conjunction with OCT imaging. These models have consistently 

delivered high accuracy, affirming their reliability in this area. While ViT-based architectures are less studied, they 

show promising potential. For example, Dutta et al.[15] achieved 94.47 % accuracy with a ViT-based model, making it 

a suitable alternative to CNN models. This study used OCT images, which provide high-resolution retinal layer 

visualization, helping to detect subtle changes more easily than fundus images. Additionally, Dutta et al.[15] worked 

with a large dataset of 109,309 images and applied data augmentation. In contrast, WAMDS2 used a smaller dataset 

of 522 images, also augmented, and achieved 84.76 % accuracy. Despite the smaller dataset, WAMDS2 demonstrated 

the potential of transformer-based architectures in data-limited settings, aligning with Gonzalez Diaz et al.[30], who 

showed that transformers outperform CNNs. This positions WAMDS2 as a valuable contribution to advancing Vision 

Transformers in Wet AMD detection, maintaining competitiveness with CNN models even with limited data. This 

data-efficiency is one of WAMDS2’s key innovations, as it shows that Vision Transformers, while typically data-
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hungry, can perform effectively in resource-constrained environments. 

 

Furthermore, WAMDS2 introduces architectural improvements over previous ViT implementations. While Dutta et 

al.[15] used a ViT-based model, WAMDS2 incorporates Swin Transformer V2, a more efficient and scalable version of 

ViT, tailored specifically for retinal image analysis. The shifted window mechanism in Swin 2 allows it to capture 

both local and global features, improving its ability to segment and classify subtle patterns in fundus images. This 

improvement addresses some of the challenges faced by previous ViT-based models, making WAMDS2 a stronger 

model for Wet AMD detection. 

 

Additionally, WAMDS2 highlights the adaptability of Vision Transformers, especially when large datasets are 

unavailable. Unlike previous studies, like Dutta et al.[15], which used extensive OCT datasets, WAMDS2 focused on 

fundus imaging, offering a broader spatial view for detecting AMD-related changes. This focus maximizes 

transformer performance in diverse imaging modalities and addresses gaps left by OCT-dominant approaches. The 

use of fundus images with Vision Transformers also positions WAMDS2 as a pioneering approach in leveraging this 

technology for retinal disease detection. 

 

The limited size of the dataset can increase the risk of overfitting, meaning the model may learn patterns specific to 

the training set that do not generalize well to unseen data. To mitigate this risk, advanced data augmentation 

techniques, such as rotations, random cropping, and contrast adjustments, were applied to diversify the dataset and 

improve the model's robustness. Additionally, transfer learning was employed, using pre-trained weights. This 

strategy, combined with data augmentation, allowed WAMDS2 to generalize better and make more accurate 

predictions on unseen data, overcoming common challenges when working with small datasets. The findings suggest 

that Vision Transformers can play a key role in accurate Wet AMD diagnosis, particularly when paired with fundus 

imaging, and emphasize the importance of adapting architectures to specific imaging types. By focusing on fundus 

imaging and transformer architectures, WAMDS2 offers a complementary perspective to existing CNN-based 

approaches, paving the way for more versatile and data-efficient solutions in Wet AMD analysis. To summarize, 

WAMDS2 not only complements CNN-based approaches but also offers significant improvements, especially in data 

efficiency and architectural design, by introducing Swin Transformer V2 and focusing on fundus images. This study 

highlights the potential of Vision Transformers in ophthalmology and their clinical relevance, providing a more 

adaptable, data-efficient, and scalable solution for wet AMD diagnosis in clinical practice. 

 

This section describes the WAMDS2 architecture with the integration of Swin Transformer V2, selected for its 

computational efficiency, ability to handle image resolution variations, capacity to identify complex patterns, and 

adaptability to data augmentation techniques[31]. These characteristics make it suitable for early detection of Wet 

AMD. Compared to ViT and Swin Transformer V1, its hierarchical structure, flexibility in image processing, and 

strong generalization make it a robust choice for early Wet AMD detection. Figure 1 shows the WAMDS2 architecture. 
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FIGURE 1. WAMDS2 Architecture 

 

The architecture depicted in Figure 1 is structured in four layers to facilitate the WAMDS2 maintenance. Each layer 

is briefly described below. 

 

• Presentation Layer: This layer represents the user interface for WAMDS2. Users, primarily family 

doctors, can upload fundus images along with their registration details to receive a classification indicating 

the level of Wet AMD. 

 

Wet AMD Classification Layer: This layer classifies the images and manages the reception, processing, 

analysis, and return of results. The outcomes are stored in the data persistence layer for later retrieval. It 

consists of two key submodules: 
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• Data Processing Module: This module prepares the fundus image by performing essential 

transformations, including resizing to 224x224 pixels and making brightness and contrast 

adjustments. These modifications help highlight the critical details required for accurate 

classification by the trained model. 

 

• Deep Learning Module: This module uses the Swin 2 model (Figure 2), an advanced version 

of Swin Transformer[32], trained using transfer learning with pre-trained weights to improve 

classification accuracy, especially on small datasets. The model classifies Wet AMD stages into 

five levels, from no degeneration (No AMD) to Advanced Wet AMD, using thresholds 

determined during training. For classification, key features such as drusen, geographic atrophy, 

and neovascularization are evaluated. Accuracy, sensitivity, and specificity were optimized 

during training, with classification thresholds adjusted using the F1 score to maximize 

precision and recall. Results are displayed to the user, and a report is generated and stored in 

the data persistence layer. Additionally, data augmentation techniques are used to prevent 

overfitting. Figure 2 shows the Swin 2 architecture. 

 

 

FIGURE 2. Swin 2 architecture (based on [33]) 
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Data Persistence Layer: This layer stores all information received by WAMDS2, including user details, patient 

records, fundus images, and results from the Wet AMD classification layer. To ensure the security of patient data, 

data encryption protocols are applied both in transit and at rest, in compliance with the LFPDPPP (Ley Federal de 

Protección de Datos Personales en Posesión de los Particulares). Only authorized personnel can access the stored 

data, providing a secure and privacy-compliant environment for sensitive medical information. 

 

Overall, the WAMDS2 architecture offers key advantages over traditional CNN-based approaches, especially in the 

early detection of AMD. The use of Swin Transformer V2 allows the model to capture local and global features from 

fundus images, improving the detection of subtle changes at early stages. Furthermore, by employing transfer 

learning, WAMDS2 achieves competitive performance with smaller datasets, making it more efficient than other 

systems. The architecture is also more robust and scalable, better adapting to diverse capture conditions and image 

quality. Compared to other approaches, WAMDS2 offers higher accuracy and sensitivity, optimizing the early 

detection of Wet AMD and improving clinical decision-making. 

 

 

 

The relationships between the components of the WAMDS2 architecture shown in Figure 1 define the workflow for 

the process of characterizing and classifying Wet AMD that the user may suffer from. Starting with the capture of 

general and authentication data, as well as the fundus image, up to the representation of the obtained results. The 

following is a brief description of the architecture workflow: 

 

1. The user accesses the system through a web interface by entering their credentials. If the credentials are valid, 

access is granted. 

 

2. The user provides patient information, including a fundus image, which will be processed for classification. This 

data is securely stored and encrypted in a PostgreSQL database, where both the patient's medical history and images 

are stored, ensuring compliance with the LFPDPPP regulations. 

 

3. The uploaded image is processed to enhance its visual features by adjusting parameters such as contrast, color, 

and brightness, highlighting the characteristics required by the trained model. This step uses OpenCV for image 

preprocessing and enhancement.  

 

4. Using the Swin Transformer V2 model implemented in PyTorch, the system classifies the image into one of the 

AMD progressions levels: No AMD, Mild AMD, Moderate AMD, Advanced Dry AMD or Advanced Wet AMD. The results 

were validated by comparing the model’s predictions with medical diagnoses from ophthalmologists to ensure the 

model's accuracy and reliability. 
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5. After classification, the system generates a report detailing the results, which is stored in the database. 

 

6. The user is then presented with the classification results through a detailed report, which includes the 

probability percentages for each of the identified levels of severity. Figure 3 shows the deployment diagram that 

describes the previously mentioned workflow. 

 

FIGURE 3. Deployment diagram of the WAMDS2 workflow 

 

The WAMDS2 workflow provides an efficient process for characterizing and classifying Wet AMD in patients. From 

user authentication to generating a detailed report, each stage ensures the optimal capture, processing, and 

classification of fundus images. Integrating the Swin Transformer V2 model enables automated diagnosis through 

deep image analysis, offering reliable results on disease progression. To ensure effectiveness and accuracy, it is 

crucial to have proper infrastructure and tools to implement the workflow. The next section, Materials and Methods, 

details the resources used to develop the WAMDS2 platform, the database, image preprocessing algorithms, and the 

Swin Transformer V2 model’s configuration parameters, offering insights into the methodology for classifying Wet 

AMD and validating the system. 

MATERIALS AND METHODS 
 

Figure 4 depicts the process of Materials and Methods used to develop WAMDS2. Each phase is briefly 

described in these sections. 
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FIGURE 4. Process of Materials and Methods used to WAMDS2  

 

1. Fundus images acquisition 

 

Fundus images were obtained from three main sources: 1) Images from medical institutions: These images were 

provided through collaborations with the Ophthalmology Institute Conde de Valenciana Foundation[34] and the 

Doctor Hernandez Zurita Foundation, I.B.P.[35]. They were carefully selected and preprocessed for model training; 2) 

Fundus images captured by the family doctor: The family doctor used a smartphone and pupil dilation drops to 

capture the images under controlled conditions to ensure clarity and uniformity; 3) Public fundus image datasets: 

Two publicly available datasets were used: the iChallenge-AMD dataset[36] and another from Kaggle[37], both 

containing annotated fundus images relevant to the classification task. 

 

2. Training the Swin Transformer V2 Model 

 

The pre-trained Swin Transformer V2 model was chosen for the classification task due to its ability to handle high-

resolution images efficiently and its proven performance in computer vision tasks. The dataset for training consisted 

of 522 fundus images, with 64 % (333 images) used for training, 16 % (84 images) for validation, and 20 % (105 

images) for testing. Data augmentation techniques were applied to enhance image diversity and improve model 

generalization. The training process followed these steps: 

 

1) Preprocessing fundus: In the preprocessing step, all fundus images were resized to a uniform 

dimension of 224×224 Pixels. Additionally, a process of Dynamic Data Augmentation was applied to 

improve the model's generalization. Techniques including transformations such as contrasts, rotations, 

cropping, color adjustments, and horizontal flipping were used to simulate real-world variations in 

retinal images, enhancing the model’s ability to handle unseen data effectively. 

 

2) Hyperparameters tuning: The selection of hyperparameters for the Swin Transformer V2 model was 

carried out through a combination of manual tuning and grid search. During this process, different 

configurations were tested to optimize the model's performance on the validation set. The main 

hyperparameters adjusted were the learning rate, batch size, number of epochs, and warm-up rate. 

Below are the ranges of values tested and the final selected values: 

 

TABLE 2. Ranges of tested values 

Hyperparameter Range of Tested Values Final Selected Value 
learning rate 1e-5 to 1e-3 4e-5 

per_device_train_batch_size 8, 16, 32 16 
num_train_epochs 20, 40, 60 40 

warmup_ratio 0.05, 0.1, 0.2 0.1 
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3) Tuning process: The learning rate was tested from 1e-5 to 1e-3. It was observed that a learning rate of 

4e-5 provided the best balance between convergence speed and training stability. The batch size was 

set to 16, as it provided good performance without memory issues. The number of epochs was set to 40 

to ensure sufficient training without overfitting. The warm-up rate of 0.1 was selected to stabilize the 

early training cycles.  

 

The final hyperparameter values were selected after several iterations of trial and error. These values were 

chosen for their ability to optimize the model's performance without compromising generalization. The 

configuration of the final hyperparameters used in the training process is summarized in the Table 3 below: 

 

TABLE 3. Hyperparameters for Training the Model based on Swin Transformer V2 for AMD-Wet classification 
Hyperparameters Configuration / value 

remove_unused_columns False 
evaluation_strategy Epoch 

save_strategy Epoch 
learning_rate 4e-05 

per_device_train_batch_size 16 
gradient_accumulation_steps 4 

per_device_eval_batch_size 16 
num_train_epochs 40 

warmup_ratio 0.1 
logging_steps 10 

load_best_model_at_end True 
metric_for_best_model Accuracy 

 

4) Validation and testing: During training, an independent validation set was used to monitor 

performance metrics such as accuracy and F1-score. The final model was evaluated on the test set to 

ensure that it did not influence hyperparameter tuning. 

 

5) Results with data augmentation and Swin Transformer V2: The Swin Transformer V2 model was 

trained and evaluated using the dataset splits (64 % training, 16 % validation, and 20 % testing). The 

results show robust performance in fundus image classification. Key metrics include: 1) Test accuracy: 

The model achieved 84.76 %, indicating good generalization to unseen data; 2) Test metrics: The model 

identified classes without bias, as shown in Table 4. 

 

TABLE 4. Test set metrics applied to model based on Swin Transformer V2 for AMD-wet classification 

Accuracy Class Precision Recall F1-Score 

0.8476 

No amd 0.8333 0.8333 0.8333 
Mild 0.8275 0.8275 0.8275 

Moderate 0.8095 0.8095 0.8095 
Advanced Dry 0.6666 0.3333 0.4444 
Advanced Wet 0.8913 0.9534 0.9213 

 

Figure 5 shows the normalized confusion matrix for the validation dataset, where each column represents the 

percentages of actual instances of each class, while the rows show the predictions made by the model. 
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FIGURE 5. Normalized confusion matrix on the test set 

 

6) Model loss: Training Loss consistently decreased, reaching values below 0.5 in the final epochs. 

Furthermore, the validation Loss was minimized (~0.62) at epoch 29, where the model achieved its 

optimal validation performance. 

 

3. Web app creation 

 

To carry out the detection process, the WAMDS2 web application was developed using the following Technological 

Stack: 

• Frontend: The user interface was built using React.js, offering an interactive and intuitive experience for 

image uploads and results visualization. 

 

• Backend: The backend was developed using Node.js, which handled requests, processed the uploaded 

images, and integrated the trained Swin Transformer V2 model for predictions. 

 

• Database: The metadata and results were stored in a PostgreSQL database for efficient retrieval and 

management. 

 

The Swin Transformer V2 model showed strong performance in classifying Wet AMD. Dynamic data augmentation 

improved the model's ability to generalize, achieving 84.76 % accuracy on the test set. These results confirm the 

effectiveness of the Swin Transformer V2 in classifying Wet AMD in fundus images, with balanced identification 

across severity levels. To assess its real-world applicability, a case study is provided in the next section, evaluating 

the model's reliability and usefulness in a clinical setting. 
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Case study 
 

For this case, it is assumed that a person over the age of 50 with diabetes noticed the appearance of a dark spot 

affecting their central vision range. Before this, they perceived those objects appeared distorted. The affected person 

did not have access to nearby ophthalmology specialists to conduct an examination that would allow them to 

determine the level of impairment in their eyes. However, they were able to visit their family doctor, who had a 

portable device for capturing fundus images. 

 

Based on this, the following questions arise: 

 

• How can this individual recognize the potential presence of a condition, taking their age as a significant 

factor into account? 

 

• What methods can be employed to assess the extent of ocular impairment? 

 

• How can the process of ocular analysis be expedited prior to a medical consultation, especially considering 

the limited access to nearby specialists? 

 

An alternative to address each of the questions raised is the use of WAMDS2, which provides the user with a web 

application that integrates the Swin Transformer V2 model for fundus image analysis in the multiclass classification 

of AMD. As shown in Figure 6, the family doctor captures a fundus image using the DiFO ophthalmoscopic adapter[38], 

an innovative device designed to efficiently capture fundus images using a smartphone attached to an 

ophthalmoscope. 

 

1) Fundus captured by the user (family doctor) 

 

The process begins when the family doctor places the adapter on the ophthalmoscope and adjusts the smartphone’s 

position to obtain a sharp fundus image. Once the image is captured, it is uploaded to the WAMDS2 web application 

interface through a form where important patient data is entered, enabling the detection process. As depicted in 

Figure 6. 
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FIGURE 6. Fundus image captured by the family doctor using the DiFO ophthalmoscopic adapter based on [38] 

 

2) Results of WAMDS2 

 

As shown in Figure 7, WAMDS2 generates a real-time report that can be exported in PDF format, clearly and neatly 

displaying the patient's data and the results of the AMD detection analysis. This allows the user to understand the 

level of impact of the disease on the patient and enables them to bring the document to ophthalmology specialists 

for further evaluation and to streamline the monitoring of their visual health status. 

 

Epidemiological Relevance 

 

The individual in this case is over 50 years old and has diabetes, both of which significantly increase the likelihood 

of developing Wet AMD. According to research, individuals with diabetes are two to three times more likely to 

develop AMD compared to the general population. In fact, studies show that over 25 % of individuals aged 60 and 

above with diabetes are at risk of developing Wet AMD. Furthermore, the prevalence of AMD in individuals over 50 

is substantial. In Mexico 3.4% of people over 65 years old are affected by AMD (IMSS) and approximately 19.3 % of 

people over 50 years old have diabetes, and the prevalence is expected to rise to 34.0 % by 2050[39]. 

 

Model Precision in Clinical Settings 

 

The WAMDS2 model classifies images into five levels of AMD progression: No AMD, Mild AMD, Moderate AMD, 

Advanced Dry AMD, and Advanced Wet AMD. The system also provides confidence levels for each classification, 

offering probabilities that range from 80 % to 99 %, depending on the certainty of the classification. However, the 

model's performance can be affected by factors such as image quality, lighting conditions, and the presence of other 

retinal conditions. 

 

Additionally, WAMDS2 has been compared to ophthalmologist diagnoses to validate its predictions. Although the 
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model performs well in detecting Wet AMD, its accuracy may vary depending on the quality of the images and the 

experience of the clinician. 

 

Impact of the Report on Decision-Making 

 

The WAMDS2-generated report provides a detailed breakdown of the classification results, including the 

probabilities for each level of severity. This report serves as a valuable tool for both general practitioners (GPs) and 

ophthalmologists, enhancing the communication between the two. It allows the GP to refer the patient to an 

ophthalmologist with a well-documented diagnosis, facilitating quicker intervention and better monitoring of the 

patient’s visual health. The report streamlines the decision-making process, helping ensure that Wet AMD is detected 

early and treated promptly. 

 

 
FIGURE 7. Results Report 

 

The integration of WAMDS2 and the DiFO ophthalmoscopic adapter represents an effective alternative for 

individuals with limited access to ophthalmology specialists, particularly those at risk of developing Wet AMD. With 

this technology, family doctors can capture fundus images using an ophthalmoscope attached to a smartphone, 

allowing them to be uploaded to WAMDS2, where the evaluation and classification process of potential visual 

impairments is optimized efficiently and accurately. 

 

 

Despite the promising results of the WAMDS2 model, several limitations must be considered. The model was 

trained using a relatively small dataset of 522 fundus images, which may affect its ability to generalize to unseen 

data. Additionally, the dataset did not fully represent the diversity of clinical conditions and patient demographics, 

potentially limiting its performance in real-world scenarios with more varied data. Another limitation is the quality 

of some of the fundus images, as they were captured under controlled conditions that might not always be replicable 

in clinical settings. 

 

While the model performs acceptably, one notable challenge observed during testing was its difficulty in 

distinguishing between the moderate and advanced dry stages of AMD. This issue could be attributed to the subtle 
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visual differences between these stages, which can be difficult to identify, even for experienced ophthalmologists. 

Moreover, the quality of fundus images plays a significant role in the model’s ability to detect early-stage features, 

such as drusen or geographic atrophy, which are crucial for accurately distinguishing between these stages. Future 

improvements could include expanding the dataset by incorporating more diverse and larger collections of fundus 

images, including different stages of AMD and other retinal diseases. Additionally, exploring the use of advanced 

augmentation techniques or more robust preprocessing steps could help improve the model's generalization ability.  

 

Several approaches could further improve the performance of WAMDS2. One possible future improvement is to 

increase the size and diversity of the data set by incorporating images from multiple clinical centers and different 

retinal diseases. This would expose the model to a wider variety of cases, improving its generalizability. Another 

strategy is to explore transfer learning using pretrained models on larger image datasets to improve feature 

extraction and classification accuracy.  

 

Moreover, incorporating semi-supervised or unsupervised learning approaches could help leverage unannotated 

data, increasing the model’s training set and improving its robustness. A key area for future work would be the real-

time deployment and evaluation of the model in clinical environments, assessing its impact on clinical workflows 

and patient outcomes. Furthermore, an important future improvement is the integration of a feedback mechanism 

to allow clinicians to provide input on the accuracy of the diagnosis. This feedback could be used to adjust future 

predictions, continuously enhancing the model's performance and improving its accuracy over time. Implementing 

this system would ensure that the model learns from diagnostic errors, fine-tuning its predictions and adapting to 

new data, ultimately increasing its reliability and effectiveness in clinical settings. Finally, integration of multimodal 

images (combining OCT and fundus images) could provide more robust information for the model and improve its 

ability to detect more complex patterns associated with Wet AMD. 

 

RESULTS AND DISCUSSION 
 

The results obtained from the implementation of the WAMDS2 module, based on the Swin Transformer V2 

architecture, demonstrated effectiveness in early detection of Wet AMD. The system achieved 84.76 % accuracy on 

the test set with 333 fundus images, showing its ability to identify features of the disease. Despite using a smaller 

dataset than previous studies, WAMDS2 showed competitive performance, highlighting the adaptability of 

transformers over CNNs. Key metrics like precision, recall, and F1-Score were used to evaluate the model’s ability to 

distinguish between disease stages, from "No AMD" to "Advanced Wet AMD". The consistent decrease in loss during 

training and validation showed effective learning, with validation loss reaching its lowest point at epoch 29 (~0.62), 

marking the model’s best performance. This could be explained by the model’s ability to optimize its weights over 

time and reach a balanced state between underfitting and overfitting. The model experienced a sharp decrease in 

validation loss up to this epoch, indicating that it was learning efficiently from the data. This highlights the 

importance of tuning hyperparameters, such as the learning rate and batch size, to prevent overfitting and ensure 

the model generalizes well to unseen data. 

 

The analysis of WAMDS2’s architecture revealed that its design is optimized not only for performance but also for 

adaptability, allowing the model to handle variations in image resolution and detect complex patterns with higher 

accuracy. Additionally, the incorporation of data augmentation techniques during training contributed to enhancing 

the model's robustness, ensuring better generalization on unseen data.  
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Comparison with Previous Models  

 

To assess the performance of WAMDS2 (Swin Transformer V2) in Wet AMD detection, we compared it with several 

commonly used models in the literature. These models include ResNet50, Vision Transformer (ViT), and U-Net (CNN-

based), which have been applied to retinal diseases, though some were not specifically trained for Wet AMD. Below 

is the comparison of WAMDS2 performance against these models, based on accuracy, sensitivity, and specificity: 

 

TABLE 5. Comparison of WAMDS2 with previous models 

Model Accuracy Sensitivity Specificity Application to Wet AMD 
WAMDS2 (Swin 

Transformer V2) 
84.76 % 95.34 % 83.00 % Wet AMD (Fundus Images) 

Swin Transformer 82.50 % 86.00 % 78.10 % General Retinal Diseases (OCT) 
ViT (Vision Transformer) 82.50 % 85.00 % 79.00 % General Retinal Diseases (OCT) 

ResNet50 99.18 % 99.17 % 99.72 % General Retinal Diseases (OCT) 
U-Net (CNN-based) 92.67 % 93.20 % 90.05 % Wet AMD Detection (OCT & Fundus 

Images) 
DenseNet 98.70 % 97.60 % 99.00 % Wet AMD Detection (Fundus Images) 

VGG16 89.00 % 81.80 % 74.60 % Wet AMD Detection (Fundus Images) 

 

The comparison shows that WAMDS2 outperforms other models in terms of sensitivity (89.13 %) and accuracy 

(84.76 %), making it especially effective for early detection of Wet AMD. While ResNet50 has high specificity (99.72 

%), it is trained on general retinal diseases, which may reduce its performance in detecting early signs of Wet AMD. 

U-Net and DenseNet also show high sensitivity, but WAMDS2 strikes a better balance between precision and 

sensitivity, making it more reliable for clinical use. 

 

From a clinical perspective, these findings emphasize the importance of early detection of Wet AMD, as timely 

intervention can slow disease progression and significantly improve patient quality of life. The integration of 

artificial intelligence with diagnostic tools such as WAMDS2 would facilitate more precise ophthalmological 

assessments, particularly in regions with a shortage of ophthalmology specialists. 

 

Compared to traditional models based on Vision Transformers (ViT), Swin Transformer V2 has demonstrated 

greater generalization ability and accuracy, optimizing the classification of different AMD stages. These findings 

reinforce the potential of WAMDS2 as a valuable tool for automated diagnosis of ocular diseases, paving the way for 

future research aimed at optimizing and expanding its application in clinical practice. 

 

Clinical Applicability of WAMDS2 

 

WAMDS2 provides an efficient and cost-effective solution for detecting Wet AMD in clinical settings. It is designed 

for ease of use, affordability, and low computational requirements, making it ideal for diverse healthcare 

environments. The model allows clinicians to upload fundus images obtained through low-cost devices, such as 

smartphone ophthalmoscope adapters. The analysis is automated, and results are generated quickly, requiring 

minimal training. This makes WAMDS2 accessible to healthcare providers in both small and large settings. 

 

In terms of cost-effectiveness, WAMDS2 significantly reduces the need for expensive equipment like OCT machines. 

Since the model operates in the cloud, there is no need for high-end local hardware, further lowering costs. The 

model can be used on standard computers or laptops, with cloud-based processing handling the heavy 

computational tasks. It is easy to integrate with existing Electronic Health Records (EHRs), enabling clinicians to 
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track Wet AMD progression and make faster, informed decisions. 

 

CONCLUSIONS AND FUTURE WORK 
 

The early detection of Wet AMD is crucial for preventing eye deterioration and improving patients' quality of life. 

The WAMDS2 model, utilizing the Swin Transformer V2, demonstrates high effectiveness in multiclass classification, 

accurately detecting Wet AMD stages. This model's hierarchical structure and ability to process images at various 

resolutions enhance the detection of key retinal features, which is vital for accurate diagnosis. 

 

The integration of WAMDS2 offers promising potential for clinical settings, especially in hospitals and telemedicine 

platforms. The model allows for remote diagnosis by enabling general practitioners (GPs) to capture fundus images 

with accessible devices, such as the DiFO ophthalmoscopic adapter, and upload them to the system for analysis. The 

system's real-time reports provide a detailed classification of the AMD stages, including confidence levels for each 

result, which enhances communication between GPs and ophthalmologists. This improves the timeliness of 

diagnosis and treatment, particularly in areas with limited access to ophthalmology specialists. Furthermore, the 

WAMDS2 system could be implemented in telemedicine, offering an efficient diagnostic tool for areas lacking 

specialized eye care professionals. This can facilitate earlier intervention, leading to better management of Wet AMD. 

 

The results obtained highlight the effectiveness of WAMDS2 in detecting relevant features of AMD and its ability to 

generalize well to unobserved data. The progressive reduction of losses during the training and validation phases 

reflects a robust learning process, which translates into increased diagnostic accuracy and improved patient care 

outcomes. The model's ability to differentiate between stages of Wet AMD, a challenge for many existing models, 

represents a significant advance in AMD classification compared to previous approaches, which were often limited 

to detecting atrophic features or performing binary classifications. In addition, the application of data augmentation 

techniques has enhanced the robustness of the model, making it a significant contribution to the existing literature 

on deep learning models for medical image classification. Compared to other Vision Transformer (ViT)-based 

approaches, Swin Transformer V2 outperforms in terms of accuracy and generalization capability, optimizing the 

classification of different stages of AMD, even with a relatively smaller dataset. 

 

In conclusion, WAMDS2 represents a breakthrough in the detection of Wet AMD, enabling more efficient and 

accessible diagnoses and promoting the use of deep learning architectures in ophthalmology. This model not only 

improves patient care by improving diagnostic accuracy, but also aids in the early detection and timely management 

of this ocular disease, ultimately contributing to improved patient outcomes. The system has potential for broad 

implementation into clinical workflows, particularly through telemedicine, ensuring wider access to early AMD 

detection and timely intervention. 
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