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ABSTRACT
Objective: To analyze the parameter identification problem for
volumetric dipolar sources in the brain from measurement of the
EEG on the scalp using a simplification which reduces the multilayer
conductive medium problem to one homogeneous medium problem with
a null Neumann boundary condition.Methodology: The minimum
squares technique is used for parameter identification of the dipolar
sources. The simple case in which the head is modelled by concentric
circles is developed. This case was chosen because we were able to obtain
the solution of the forward problem in exact form and for the simplicity
of the exposition. Results: The parameter of the dipolar sources can
be identified from the EEG on the scalp using the simplification. For the
theoretical analysis the results developed for one homogeneous region
are used. The numerical implementation is simpler than the multilayer
case and the numerical computation requires minor computational cost.
Conclusion: The feasibility for solving the parameter identification
problem using the simplification is shown. These results can be extended
to the case of concentric spheres and complex geometries but the
solution cannot be found in exact form.

Keywords: inverse electroencephalographic problem, volumetric
dipolar sources, Green function.
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RESUMEN
Objetivo: Analizar el problema de identificación de los parámetros
para fuentes dipolares volumétricas en el cerebro a partir de la medición
del EEG en el cuero cabelludo mediante una simplificación que reduce
el problema de un medio conductor de múltiples capas a un problema
en un medio homogéneo con una condición de Neumann nula en su
frontera. Metodología: Se utiliza la técnica de mínimos cuadrados
para identificar los parámetros de las fuentes dipolares. Se desarrolla el
caso simple en el que la cabeza está modelada por círculos concéntricos
debido a que la solución del problema directo se puede calcular en
forma exacta y por la sencillez de la exposición. Resultados: Se
identifican los parámetros de la fuente dipolar a partir del EEG sobre
el cuero cabelludo usando la simplificación. Para el análisis teórico se
utilizan los resultados desarrollados para una región homogénea. La
implementación numérica es más simple y el cálculo numérico requiere
menor costo computacional. Conclusión: Se muestra la factibilidad
para resolver el problema de identificar los parámetros de una fuente
dipolar por medio de la simplificación. Los resultados pueden ser
extendidos al caso de esferas concéntricas y al de geometrías complejas
pero la solución del problema directo no puede hallarse en forma exacta.

Palabras clave: problema inverso electroencefalográfico, fuentes
dipolares volumétricas, función de Green.

INTRODUCTION

Different non-invasive techniques for brain
scans have been developed using mathematical
models. These include positron emission
tomography, magnetic resonance imaging and
electroencephalography. This final technique is
the present study focus. Electroencephalography
is the best known among the non-invasive brain
investigation methods. It is based on the use
of scalp located electrodes to record brain
electrical activity. This recording is known as
the Electroencephalogram (EEG). The electrical
activity is generated by the bioelectrical
activities of large neuron populations working
synchronously [1, 2]. The EEG technique allows
us to detect anomalies in the brain (damage,
malfunction, etc.) which have traditionally been
done by different diagnostic techniques. The
problem is studied through a boundary value
problem, which is obtained using a model that
describes the head as a conductive layer medium.

This model allows finding relationships between
the characteristics of the bioelectrical activity
and the EEG.

This paper presents the analysis of the
inverse problem for dipolar sources in the brain
from measurement of the EEG on the scalp.
This analysis uses a simplification in which the
original problem is reduced to a problem in
a homogeneous region with a null Neumann
condition along with a "measurement" (which
is obtained from the EEG) on the boundary
of the mentioned homogeneous region (Cauchy
data). For the analysis and the simplicity of
the exposition, the head is modelled for two
concentric circles. This allows the forward
problem calculation in exact form. Two auxiliary
problems are solved in exact form too. For that,
the Green function for the Poisson equation with
a null Neumann boundary condition in a circular
homogeneous region and the circular harmonics
are used.
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MATHEMATICAL MODEL

We will suppose that the human head, considered
as conductive medium, is divided in two disjoint
zones as illustrated in Fig. 1. Where Ω = Ω̄1 ∪
Ω2 represents the head, Ω1 the brain, Ω2 the
rest of the head, σ1 and σ2 are the constant
conductivities of Ω1 and Ω2, S1 represents the
cerebral cortex and S2 the scalp.

The study of the Inverse Electroencephalogra
phic Problem (IEP) can be made through the
following boundary value problem [1, 3, 4, 5]:

∆u1 = f in Ω1, (1)

∆u2 = 0 in Ω2, (2)

u1 = u2 on S1, (3)

σ1
∂u1

∂n1
= σ2

∂u2

∂n1
on S1, (4)

∂u2

∂n2
= 0, on S2, (5)

where f is called the source, ui = u|Ωi
, i = 1, 2,

u represents the electrical potential in Ω, and
∂ui
∂nj

, i = 1, 2 denote the normal derivative of
ui on Sj regarding the normal unitary vector
nj , j = 1, 2. The boundary conditions (3)-(4)
are called the transmission and the condition (5)
is obtained when we consider the conductivity
of air equal zero. We will call this problem
the Electroencephalographic Boundary Problem
(EBP).

From the Green formulas the following
compatibility condition is deduced∫

Ω 1

f(x)dx = 0. (6)

In the next section, we will study the
identification problem of the function f given in
(1) using the boundary value problem (1)-(5) and
the additional boundary condition:

u2 = V.

Figure 1. Representation of the head as two
homogeneous conductive layers.

SIMPLIFICATION OF THE INVERSE
EEG PROBLEM TO ONE IN A

HOMOGENEOUS REGION

The simplification is achieved through the
following steps:

1. We can find the harmonic function u2 through
the Cauchy data u2 = V and ∂u2

∂n2
= 0 on the

boundary S2.

2. Making ψ = σ2
σ1

∂u2
∂n1

∣∣∣
S1

we solve the problem to
find a harmonic function ū in Ω1 which satisfies
the boundary condition ∂ū

∂n1
= ψ. We take the

solution which is orthogonal to the constants
in order to have uniqueness of the solution.
The compatibility condition of ψ is given by∫
S1
ψ(s)ds = 0, which is deduced from the Green

formulas.
3. Now, we consider the following inverse source
problem: Find the source f that satisfies the
problem

∆û = f in Ω1,

∂û

∂n
= 0 on S1, (7)

using the additional data on S1:

û|S1
= g = φ− ū|S1

, (8)

where φ = u2|S1
.

From this we see that the IEP can be
solved through the previous inverse problem.
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The problem (7-8) is called the Inverse
Electroencephalographic Simplified Problem
(IESP).

The development of this section is valid
for general regions with sufficiently smooth
boundaries.

STATEMENT OF THE INVERSE
PROBLEM FOR DIPOLAR SOURCES

In this paper we are interested in the case
where the source is an epileptic focus. In general,
the current distributions describing sources of
neural activity are quite intricate. A common
simplifying assumption is to consider a current
dipole as a source. This model, which is known
as the equivalent current dipole, has been
shown to accurately depict sources not too
deep inside the brain [6] and to permit the
associated estimation and accuracy analysis to
be carried out fairly simply. More complicated
shapes may be approximated by multiple dipoles
or multipolar expansions. For simplicity, in this
work, we consider only a single dipole of current
density. In this case, the source f can be
represented in the form [1]

f = 1
σ1

div (pδ(x− a)) , (9)

where p represents the dipolar moment (that
determines the intensity and orientation of
the dipole) and δ(x − a) is the Dirac delta
concentrated in a. In this case we have
uniqueness of solution for the inverse problem if
the measurement V is known on the whole scalp.

We suppose that measurement V is known.
With the ideas presented in the previous section,
we can recover the parameters of the dipole
source, namely, the dipole moment p and
its location a, through the minimum squares
functional

min
p, a
‖û(x)− g‖2 , (10)

where û is the solution of the problem (7) and
g is given by (8) and, of course, û is given in

terms of the source f and g in terms of V .
Some iterative method must be used for the
minimization process. In section 6, we apply the
function fmincon of MATLAB which uses a
Newton type method.

The solution of the problem (7) when f is
given by (9) is [5]

û(x) =
[

p
σ1
· OyG(x, y)

]∣∣∣∣
y=a

, (11)

where G(x, y) is the Green function of the
problem (7). The main inconvenience with the
Green function technique is due to the difficulty
of finding it when the geometry is not simple.

In the case of general smooth boundaries,
in which we can´t use the Green function
technique, the ideas presented in this work can
be developed using numerical methods (as the
boundary element and finite element) since the
solution of the problems presented in the last
section must be found numerically. This is not
considered in this work.

DEVELOPING THE IDEAS IN THE
SIMPLE CASE OF CONCENTRIC

CIRCLES

In order to validate the ideas presented in section
3, the forward problem must be solved. For
simplicity of the exposition we consider the case
in which the human head is modelled through
two concentric circles. We chose this case due
to the solution of the forward problem can be
calculated in exact form without using numerical
methods which is important since we can build
synthetic examples for validating the reduction
to one problem defined in a homogeneous region.
The results of this section can be extended
to the case of concentric spheres but in this
case we must calculate numerically some integral
associated with the Fourier coefficient of the
measurement (solution of the forward problem).
The case of complex geometries can be solved
with the method presented in this work, but
it is necessary to use numerical methods for
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solving the forward and the inverse problems.
But even in this case, the proposed method gives
advantages because we need fewer calculations.
According to the ideas presented in this work the
inverse problem is reduced to one in a circular
homogeneous region and for this case we will use
the Green function technique.

Green’s function for the problem (7)

The Green function G(x, y) defined in Ω1 × Ω1
of the problem (7) satisfies the boundary value
problem:

∆xG(x, y) = δ(x− y)− 1
πR2

1
in Ω1,

∂G(x, y)
∂nx

= 0 on ∂Ω1. (12)

For the case when Ω1 corresponds to circle of
radius R = R1, the Green function is given by

G(x, y) = 1
2π {ln|x− y|

+ ln|ȳx−R2
1| −

|x|2 + |y|2

2R2
1

}
, (13)

where ȳ is the complex conjugate of y [5].

The Green function for the spherical case can
be found in [7, 8].

Solution of the forward problem

In order to find the solution of the forward
problem, we consider the following auxiliary
boundary value problem

∆w1 = 0 in Ω1, (14)
∆w2 = 0 in Ω2, (15)

w1 = w2 − g on S1, (16)

σ1
∂w1

∂n1
= σ2

∂w2

∂n1
on S1, (17)

∂w2

∂n2
= 0 on S2, (18)

where g(x) = û(x) =
[

P
σ1
· ∇yG(x, y)

]∣∣∣
y=a

x ∈
S1. The solution of the problem (14)-(18) is

unique in the orthogonal space to the constants
[9].

The solution to the problem (1)-(5) is given
by

u(x) =

 û+ w1 x ∈ Ω1

w2 x ∈ Ω2

(19)

Now, we calculate the solution of the problem
(13)-(17) which can be expressed in the form:

w1(r, θ) =
∞∑
k=1

a1
kr
k cos kθ + b1kr

k sin kθ,

w2(r, θ) =
∞∑
k=1

(
a2
kr
k + b2kr

−k) cos kθ

+
(
c2kr

k + d2
kr
−k) sin kθ. (20)

From (16) and (17) we get

a1
kR

k
1 = a2

kR
k
1 + b2kR

−k
1 − g1

k,

b1kR
k
1 = c2kR

k
1 + d2

kR
−k
1 − g2

k, (21)

σ1a
1
kR

k
1 = σ2

(
a2
kR

k
1 − b2kR−k1

)
,

σ1b
1
kR

k
1 = σ2

(
c2kR

k
1 − d2

kR
−k
1
)
, (22)

where gik, i = 1, 2 are the Fourier coefficients of
g and g(θ) =

∞∑
k=1

g1
k cos kθ + g2

k sin kθ.

From (21) and (22) we find

(σ1 − σ2)Rk1a2
k + (σ1 + σ2)R−k1 b2k = σ1g

1
k,

(σ1 − σ2)Rk1c2k + (σ1 + σ2)R−k1 d2
k = σ1g

2
k. (23)

Now, using the condition (18) we get

a2
kR

k
2 − b2kR−k2 = 0,

c2kR
k
2 − d2

kR
−k
2 = 0. (24)

From (23) and (24)
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a2
k = σ1g

1
kR

k
1

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
, (25)

c2k = σ1g
2
kR

k
1

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
, (26)

b2k = σ1g
1
kR

k
1R

2k
2

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
, (27)

d2
k = σ1g

2
kR

k
1R

2k
2

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
. (28)

Substituting (25)-(28) in (21), we find

a1
k =

σ1g
1
k

(
R2k

1 +R2k
2
)

Rk1
[
(σ1 − σ2)R2k

1 + (σ1 + σ2)R2k
2
] − g1

k

Rk1
, (29)

b1k =
σ1g

2
k

(
R2k

1 +R2k
2
)

Rk1
[
(σ1 − σ2)R2k

1 + (σ1 + σ2)R2k
2
] − g2

k

Rk1
. (30)

The coefficients (25)-(30) give the solution to
the problem (14)-(18) and the measurement is
given by V =

∞∑
k=1

V 1
k cos(kθ) + V 2

k sin(kθ) where

V 1
k = 2σ1R

k
1R

k
2[

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
]g1
k, (31)

V 2
k = 2σ1R

k
1R

k
2[

(σ1 − σ2)R2k
1 + (σ1 + σ2)R2k

2
]g2
k. (32)

Now we calculate the Fourier expansion of
the function g =

[
p
σ1
· OyG(x, y)

]∣∣∣
y=a

.

As a first step we must calculate OyG(x, y).
After some calculations we get

∇yG(x, y) = x− y
|x− y|2

+ y

R2
1

+((
x1y1 + x2y2 −R2

1
)
x1 + (y1x2 − y2x1)x2 ,

|x− y|2(
x1y1 + x2y2 −R2

1
)
x2 − (y1x2 − y2x1)x1

)
|x− y|2

. (33)

Let p = (p1, p2). Then

g(x) = p1

σ1

{(
x1y1 + x2y2 −R2

1
)
x1

|x− y|2

+ (y1x2 − y2x1)x2 + (x1 − y1)
|x− y|2

}
+ p2

σ2

{(
x1y1 + x2y2 −R2

1
)
x2

|x− y|2

− (y1x2 − y2x1)x1 + (x2 − y2)
|x− y|2

}∣∣∣∣
y=a

(34)

Taking into account that the solution is
orthogonal to the constants, the terms y1

R2
1
and

y2
R2

1
were neglected. We denote x1 = R1 cos(θ),

x2 = R1 sin(θ), y1 = r cos(θy) and y2 = r sin(θy).
After substituting this in (34) we obtain

g(x) =
p1
(
1−R2

1
)

σ1

[
R1 cos θ − r cos θy

|x− y|2

]
+

p2
(
1−R2

1
)

σ2

[
R1 sin θ − r sin θy

|x− y|2

]
. (35)

Now, we calculate the Fourier coefficients of g.

g1
k = 〈g(x), cos(kθ)〉

=
p1
(
1−R2

1
)
R2

1
σ1

∫ 2π

0

cos θ cos(kθ)
|x− y|2

dθ

+
p2
(
1−R2

1
)
R2

1
σ2

∫ 2π

0

sin θ cos(kθ)
|x− y|2

dθ

−
[(

1−R2
1
)
rR1

(
p1 cos(θy)

σ1
+ p2 sin(θy)

σ2

)
×

∫ 2π

0

cos(kθ)
|x− y|2

dθ

]
, (36)

g2
k = 〈g(x), sin(kθ)〉

=
p1
(
1−R2

1
)
R2

1
σ1

∫ 2π

0

cos θ sin(kθ)
|x− y|2

dθ

+
p2
(
1−R2

1
)
R2

1
σ2

∫ 2π

0

sin θ sin(kθ)
|x− y|2

dθ

−
[(

1−R2
1
)
rR1

(
p1 cos(θy)

σ1
+ p2 sin(θy)

σ2

)
×

∫ 2π

0

sin(kθ)
|x− y|2

dθ

]
. (37)

It is necessary to calculate the following
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integrals

I1
1k =

∫ 2π

0

cos(θ) cos(kθ)
|x− y|2

dθ,

I2
1k =

∫ 2π

0

sin(θ) cos(kθ)
|x− y|2

dθ,

I1
2k =

∫ 2π

0

cos(θ) sin(kθ)
|x− y|2

dθ,

I2
2k =

∫ 2π

0

sin(θ) sin(kθ)
|x− y|2

dθ.

For that we need the following integrals

Im1 =
∫ 2π

0

cos(mθ)
|x− y|2

dθ, m = 1, 2, 3, . . .

Im2 =
∫ 2π

0

sin(mθ)
|x− y|2

dθ, m = 1, 2, 3, . . .

It can be seen that

Im2 = 2πrm sin(mθy)
Rm−1

1 (R2
1 − r2

0)
m = 1, 2, 3, . . . (38)

where we use the notation x = R1e
iθ, y = r0e

iθy .
In effect,

Im2 = 1
Rm−1

1
Im
(∫ 2π

0

ym

|x− y|2
dθ

)
,

and taking into account that dx = ixdθ, then

Im2 = 1
Rm−1

1
Im
(
−i
∫ 2π

0

xm−1

|x− y|2
ixdθ

)

= 1
Rm−1

1
Im
(
−i
∫
|x|=R1

xm−1

|x− y|2
dx

)
,

where now the differential is complex. From this

Im2 = 1
Rm−1

1
Im
(
−i
∫
|x|=R1

xm−1

(x− y)(x̄− ȳ)dx
)

= 1
Rm−1

1
Im
(
−i
∫
|x|=R1

xm−1x

(x− y)(x̄− ȳ)xdx
)

= 1
Rm−1

1
Im
(
i

∫
|x|=R1

xm

(x− y)(xȳ −R2
1)dx

)

= 1
Rm−1

1
Im
(
i

∫
|x|=R1

xm

(y − x)(R2
1 − xȳ)dx

)
.

We define Φ(y) = − xm

(R2
1−xȳ)

. Note that
xm

(x−y)(R2
1−xȳ)

= Φ(x)
x−x0

where x0 = y. Since Φ is
analytical in Ω1 we have that

Im2 = 1
Rm−1

1
Im (i(2πiΦ(x0)))

= 1
Rm−1

1
Im
(

2π ym

R2
1 − r2

0

)
= 2πrm sin(mθy)
Rm−1

1 (R2
1 − r2

0)
.

Analogously

Im1 = 2πrm cos(mθy)
Rm−1

1 (R2
1 − r2

0)
m = 1, 2, 3, . . . (39)

Using trigonometric identities we get

I1
1k = πrk−1

0
Rk1

[
r2
0 cos ((k + 1)θy)

(R2
1 − r2

0)

+ R2
1 cos ((k − 1)θy)

(R2
1 − r2

0)

]
,

I2
1k = πrk−1

0
Rk1

[
r2
0 sin ((k + 1)θy)

(R2
1 − r2

0)

− R2
1 sin ((k − 1)θy)

(R2
1 − r2

0)

]
,

I1
2k = πrk−1

0
Rk1

[
r2
0 sin ((k + 1)θy)

(R2
1 − r2

0)

+ R2
1 sin ((k − 1)θy)

(R2
1 − r2

0)

]
,

I2
2k = πrk−1

0
Rk1

[
R2

1 cos ((k − 1)θy)
(R2

1 − r2
0)

− r2
0 cos ((k + 1)θy)

(R2
1 − r2

0)

]
,
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from where

g1
k =

(
1−R2

1
)
p1πr

k−1
0

σ1R
k−2
1 (R2

1 − r2
0)

×
[
r2
0 cos ((k + 1)θy) +R2

1 cos ((k − 1)θy)
]

+
(
1−R2

1
)
p2πr

k−1
0

σ2R
k−2
1 (R2

1 − r2
0)

×
[
r2
0 sin ((k + 1)θy) +R2

1 sin ((k − 1)θy)
]

−
[(

p1 cos(θy)
σ1

+ p2 sin(θy)
σ2

)
×

(
1−R2

1
)

2πrk+1
0 cos(kθy)

Rk−2
1 (R2

1 − r2
0)

]
, (40)

and

g2
k =

(
1−R2

1
)
p1πr

k−1
0

σ1R
k−2
1 (R2

1 − r2
0)

×
[
r2
0 sin ((k + 1)θy) +R2

1 sin ((k − 1)θy)
]

+
(
1−R2

1
)
p2πr

k−1
0

σ2R
k−2
1 (R2

1 − r2
0)

×
[
R2

1 cos ((k − 1)θy)− r2
0 cos ((k + 1)θy)

]
−

[(
p1 cos(θy)

σ1
+ p2 sin(θy)

σ2

)
×

(
1−R2

1
)

2πrk+1
0 sin(kθy)

Rk−2
1 (R2

1 − r2
0)

]
. (41)

The restriction of the function w2 to S2 gives
the solution of the forward problem.

Solution of the inverse problem

For solving the inverse problem we suppose
that the measurement is given by V =
∞∑
k=1

V 1
k cos(kθ) + V 2

k sin(kθ). The first step

consists of finding the function u2 (solution of
the Cauchy problem in Ω2 ) from V. After some
calculation we find

u2(r, θ) = 1
2

∞∑
k=1

{
V 1
k

[(
r

R2

)k
+
(
R2

r

)k]
cos(kθ)

+ V 2
k

[(
r

R2

)k
+
(
R2

r

)k]
sin(kθ)

}
. (42)

The second step consists of finding the
harmonic function ū in Ω1, orthogonal to the
constants, that satisfies the Neumann condition
∂ū
∂n1

= ψ = σ2
σ1

∂u2
∂n1

∣∣∣
S1
. This function is given by

ū = σ2

2σ1

∞∑
k=1

{(
r

R1

)k [(
R1

R2

)k
−
(
R2

R1

)k]
×
[
V 1
k cos(kθ) + V 2

k sin(kθ)
]}
. (43)

From this, the “measurement” g on S1 is
given by

g = 1
2

∞∑
k=1

{(
R1

R2

)k [
1− σ2

σ1

]
+
(
R2

R1

)k [
1 + σ2

σ1

]}
×
[
V 1
k cos(kθ) + V 2

k sin(kθ)
]
. (44)

Note that in (44) the Fourier coefficients of g
are in terms of V 1

k and V 2
k . On the other hand,

these Fourier coefficients are given in terms of
the parameters of the dipolar source p and a.
The next step consists of determining, from the
measurement V, the parameters of the dipole p
and a through the least squares functional (10).
In the following, we suppose that V 1

k and V 2
k are

known. We have to minimize the functional

min
p,a

N∑
k=1

(
g1
k − g̃1

k

)2 +
(
g2
k − g̃2

k

)2
, (45)

where g̃1
k and g̃2

k are the approximations of the
Fourier coefficients obtained using (44) when the
Fourier coefficients of V have errors and N is
chosen appropriately such as [10] and [11] (for
two and three dimensions, respectively) for the
ill-posedness of the problem due to the numerical
instability.

When the measurement is given at a finite
number of points on the scalp, we can obtain
the measurement on the whole scalp using
a regularized interpolation method such as
presented in [12].
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Table 1: Comparison of the exact and approximated parameters for different initial points.
Parameters r0 θy p1 p2 Initial point Euclidian error

Exact 0.7 π
3 0.5 0.5

Approximated 0.6667 1.073 0.5197 0.4164 (0.60,0.785,0.60,0.40) 0.0934
Approximated 0.7000 1.594 0.500 0.500 (0.60,0.784,0.58,0.40) 0.0207
Approximated 0.6994 1.0250 0.3239 0.4829 (0.61,0.748,0.58,0.41) 0.0318
Approximated 0.7416 1.0528 0.4405 0.4324 (0.45,0.698,0.65,0.37) 0.0099
Approximated 0.7269 1.1227 0.5719 0.4986 (0.42,0.698,0.68,0.39) 0.0116
Approximated 0.7072 1.0697 0.4028 0.4997 (0.63,2.094,0.60,0.37) 0.0100

Simple geometries for the analysis of the
inverse electroencephalographic problem have
been used. For the case of a dipolar source in
[13] a method for finding its location is presented
which is based on rational approximations in the
complex plane. In [14] an algorithm for finding a
dipole from Cauchy data is given considering a
spherical model for the head.

NUMERICAL EXAMPLES

In this section we present synthetic examples
in order to show the ideas presented in this
work. We consider that R1 = 1.2, R2 = 2,
σ1 = 3 and σ2 = 1. We take as the parameters
of the dipolar source p = (p1, p2) = (0.5, 0.5)
and (r0, θy) = (0.7, π/3) (polar coordinates).
Using (31), (32), (40) and (41) we calculate
the corresponding measurement V . In order to
simulate the inherent error of the measurement
V δ due to the equipment, a random error
to the Fourier coefficients of V such that∥∥∥V − V δ

∥∥∥
L2(S2)

< δ it is included. In this case we
have the following approximation to the function
g :

gδ = 1
2

∞∑
k=1

{(
R1

R2

)k [
1− σ2

σ1

]
+
(
R2

R1

)k [
1 + σ2

σ1

]}
×
[
V 1,δ
k cos(kθ) + V 2,δ

k sin(kθ)
]
. (46)

We made programs in MATLAB for
determining the parameters of the dipolar source
taking as input data the values given in (46)
and using the fmincon function which use a
Newton type method. In Table 1, the results

obtained are presented. For the election of the
initial point of the iterative method we can use
additional information about the problem (a
priori information). We take δ = 0.1 and N = 10.

The ill-posedness of the problem due to the
numerical instability must be taken into account
for obtaining a stable solution.

The ideas presented in this work can be
used for more realistic geometries of the head
along with numerical methods such as finite
element method. In [15] numerical methods for
dipoles identification are proposed, namely, the
finite element method and the boundary element
method.

CONCLUSIONS

The problem of determining the epileptic focus
from EEG on the scalp has been studied through
a model that consider the head as a multilayer
conductive medium as well as the quasi static
approximation of Maxwell equations which
address one boundary value problem that allows
establishing relationships between epileptic focus
and the EEG. The multilayer model can be
reduced to one problem in a homogeneous region
with a null Neumann condition. From this, the
problem of determining the parameters of the
dipolar source is analysed in the homogeneous
region mentioned above. This is conceptually and
numerically more simple than multilayer case.
The proposed method is validated numerically
through synthetic examples for the case of
concentric circles. This simple case was chosen
because we were able to obtain the solution of
the forward problem in exact form and this fact
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is used for validating the proposed method. In a
similar way, these examples can be developed for
the case of multilayer spherical geometry which
is commonly used for the study of this problem.
Even more, this can be used for more realistic
geometries of the head along with numerical
methods such as the finite element method. For
the case of a finite number of points on the scalp
in which the measurement is given, we must
apply stable interpolation methods for obtaining
the measurement on the whole scalp for the
uniqueness of the solution of the inverse problem.
However this is not considered in this work.
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