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ABSTRACT
This work proposes a Dynamic fuzzy logic Controller for the navigation
problem of an electric wheelchair. The controller uses present data
from three ultrasonic sensors as the main source of information from
the environment. However other inputs, named as “dynamic time
delay”, are obtained from past samples of those static data and are
used to design the rule base. Although fuzzy logic controllers with
static inputs could solve basic navigation problems, the proposed
structure with dynamic inputs gets an excellent performance for more
complex navigation problems. There were designed static and dynamic
navigation strategies, which were first deployed in software just to
evaluate their behavior. They were tested in a maze and their
trajectories were compared to select the best. For improving its
response, the dynamic fuzzy logic strategy was deployed in hardware.
The paper presents a comparison between the software and hardware
applications to illustrate the possibility of implementing the proposed
methodology in different platforms. The dynamic fuzzy logic controller
led the electric wheelchair without colliding against walls, and is a high
performance navigation system. Moreover, this controller could solve
the sensor limitations.
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sensors.



126 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

Correspondencia:
Mario Rojas

EGIA, Calle del Puente #222
Col. Ejidos de Huipulco,

Tlalpan C.P. 14380, México
D.F

Correo electrónico:
mario.rojas@itesm.mx

Fecha de recepción:
12 de Octubre de 2013.

Fecha de aceptación:
19 de Junio de 2014

RESUMEN
En este trabajo se presenta un controlador dinámico con lógica difusa
para el problema de navegación de una silla de ruedas. El controlador
usa datos presentes de tres sensores ultrasónicos como la principal fuente
de información del entorno. Sin embargo, a partir de valores pasados
se obtienen otras entradas designadas como “retrasos dinámicos´´
para la base de reglas. A pesar de que los controladores de lógica
difusa con entradas estáticas pueden resolver problemas básicos de
navegación, la estructura propuesta con entradas dinámicas tiene un
excelente desempeño para problemas de navegación más complejos.
Se diseñaron estrategias de navegación estáticas y dinámicas, las
cuales fueron implementadas primero en software para evaluar su
desempeño. Se usó un laberinto y sus trayectorias fueron comparadas
para seleccionar el mejor. Para mejorar su respuesta, la estrategia
dinámica fue implementada en hardware. Este artículo presenta una
comparación entre las aplicaciones de hardware y software para ilustrar
la posibilidad de implementar la metodología en diferentes plataformas.
El controlador dinámico de lógica difusa dirigió la silla eléctrica sin
colisionar contra los muros, y es un sistema de navegación de alto
desempeño. Así mismo, este controlador podría resolver las limitaciones
del sensor.

Palabras clave: lógica difusa, controlador, dinámico, silla de ruedas,
sensores ultrasónicos.

INTRODUCTION

Word report on disability recommends the use of
electric wheelchairs (EW) as assistive technology
for handicapped persons [1]. Furthermore, smart
electric wheelchairs could solve the mobility
problem when the patients suffer strong mobility
limits and cannot control the joystick. They
could be assisted by a smart wheelchair which
includes sensors, controllers, user interfaces and
navigation modules as presented in [2] and [3].

The smart wheelchairs are classified as
autonomous, semi-autonomous and hybrid
systems [4]. In an autonomous wheelchair,
the operator indicates it where to go, then
the system plans the route and moves there
without assistance. In those prototypes, the user
only waits for the system to reach the specified
objective without being able to choose the speed
or the trajectory. Besides, those systems are
limited to local and well-known environments,

and they are planned to be used by patients
who cannot control any device because of their
disability. In the semi-autonomous prototypes,
the operator and the system work together by
means of some user interface, sensors and smart
navigation techniques. With this approach, the
patient partially needs help in certain navigation
tasks but he is able to control the mobility. Tasks
like obstacle avoidance, wall following, parking
and door passage are typically used in this kind
of smart EW as mentioned in [5], [6] and [7].

Conventional controllers are classified in two:
linear and nonlinear. The linear controllers are
constructed from analyzing a set of equations,
which model the dynamic of the system with
precision, or at least approximately. On
the other hand, for nonlinear controllers the
mathematical model contains uncertainties or is
totally unknown because of its complex behavior
(all control systems are actually nonlinear) [8].
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Figure	  1.	  The	  fuzzy	  controller	  

There are several works of FLC applied to 
autonomous mobile robots, for instance [10], [11] and 
[12]. More precisely, a review of {\it fuzzy logic} 
applications in electric wheelchairs is presented in 
Table	   1. This technique can be used to implement 
obstacle avoidance or wall following algorithms for 
navigation of the EW in some unknown environments. 
For instance, in references [13], [14], [15], [16] and 
[17] are presented prototypes which use distance 
sensors as inputs for the {\it fuzzy logic} controller. 
Another cases of application are those with {\it fuzzy 
logic} as part of the user interface to get instructions 
from the user (i.e. the flex sensor in [18], the voice 
commands in [15] or the joystick operation mode 
described in [16]). Finally, other works use {\it fuzzy 
logic} for complementary tasks of the complete 
system as pairing location patterns in a map or 
controlling the speed of the wheelchair motors ( [19] 
and [20], respectively). 

According to the review presented in Table 1, the 
wheelchair performance is related with three main 
aspects: the sensors employed, the processing core and 
the implemented methodology. For the case of sensors, 
they are used to get distance measurements from 
obstacles. Ultrasonic sensors have been widely used in 
prototypes because of their low cost and fast responses, 
however they have some noise problems, which can be 
improved with software. Another alternative is the 
infrared sensors (IR), but they are limited in distance 
and visible light affects their performance as presented 
in [15]. Other systems use laser range finders, but they 
are not as cheap as ultrasonic sensors [5]. It is certainly 
true that a big number of sensors comprises more 
environment information for the controller, but this 
outcomes in a more complex control [16].  In those 
cases, if the processor is limited in resources the 
response will be slow.  

The other aspect to consider is the processing core. In 
Table 1, all projects were implemented using 
microcontrollers or computers, and just one of them 
used real-time hardware to control the motors rotation 

speed [21]. In contrast, there are parallel architectures 
which allow data to access the resources at the same 
moment, and they guarantee the execution in a time 
period. The real-time hardware, like Field Gate 
Programmable Array (FPGA) has proved to be very 
efficient and reliable, and there are a lot of 
advantages about configuring a controller in the 
FPGA instead of using a computer or any 
microcontroller [22].  

 

Table	  1.	  Main	  works	  developed	  using	  {\it	  fuzzy	  logic}	  for	  an	  
Electric	  Wheelchair	  (EW)	  

Ref.  Description  
 

[13] Two fuzzy controllers are used: one for joining a 
target specified by specifying an (x, y) coordinate 
and the other for avoiding obstacles.  

[14] 
 

The fuzzy controller considers distance, presence 
and direction from the objects to decide if it 
necessary to change the trajectory. 

[18] It uses two fuzzy controllers, one to determine 
actions from the flex sensors and the other for 
obstacle avoidance based in ultrasonic sensors. 
Preference is given to the fingertip control if 
obstacles are far and to the obstacle avoidance 
system if objects are close.  

[15] 
 

It includes an obstacle avoidance control which 
uses IR sensors, as well as a contour following 
control. Both are {\it fuzzy logic} controllers.  

[20] 
 

Utilizes FPGA technology in a wheelchair 
combined with a {\it fuzzy logic} control 
designed to manipulate the rotation speed of the 
driving motors. It is not a navigation control.  

[16] The fuzzy controller is based in the information 
given by eight sonar sensors and the joystick. 
Inference system is based in that information to 
control direction and speed of the wheelchair. 

[19] 
 

The fuzzy control is focused on matching the 
position of a wheelchair in a sidewalk network 
map of an urban area, by using a GPS.  

[17] 
 

The {\it fuzzy logic} controller is designed to 
alternate between manual and automatic 
navigation depending of near obstacles. This 
assures the switching to be gradual. The automatic 
controller is also based in {\it fuzzy logic} to 
avoid obstacles. 

[23] 
 

The controller is used to determine the operator 
orders by using a seat pressure sensor and body 
movements as the interface. The inputs for the 
inference system are the x and y velocity and 
acceleration of human gravity center. The 
prototype includes omnidirectional wheels for 
moving in every direction.  

  
Finally, in relation with the implemented algorithm to 
avoid obstacles, the Mamdami methodology is used 
in [14], [18], [15], [16], [17] and [23]. Mamdani is a 

Figure 1. The fuzzy controller.

The fuzzy logic, introduced by Zadeh in [9],
is used as a control technique for systems in
which no mathematical model is known. It
is complicated to find a mathematical model
when the user takes navigation decisions based
on vague and imprecise information, but it
is possible to approximate their actions with
a controller based in fuzzy logic. The basic
topology of a Fuzzy Logic Controller (FCL) is
shown in Figure 1. The inputs are crisp values,
which are changed into degrees of membership
between 0 and 1. The membership functions
are described with linguistic labels (like Close
or Far), which are very useful for constructing
the rule base built with if-then structures. The
input fuzzy sets are used as antecedents and
the output fuzzy sets as consequents, both are
connected with a fuzzy operator to determine
the rule membership value. This value is used
in the defuzzification process to determine the
crisp output.

There are several works of FLC applied to
autonomous mobile robots, for instance [10],
[11] and [12]. More precisely, a review of
fuzzy logic applications in electric wheelchairs is
presented in Table 1. This technique can be
used to implement obstacle avoidance or wall
following algorithms for navigation of the EW
in some unknown environments. For instance,
in references [13], [14], [15], [16] and [17] are
presented prototypes which use distance sensors
as inputs for the fuzzy logic controller. Another
cases of application are those with fuzzy logic as
part of the user interface to get instructions from
the user (i.e. the flex sensor in [18], the voice
commands in [15] or the joystick operation mode
described in [16]). Finally, other works use fuzzy
logic for complementary tasks of the complete
system as pairing location patterns in a map or

controlling the speed of the wheelchair motors
([19] and [20], respectively).

According to the review presented in Table
1, the wheelchair performance is related with
three main aspects: the sensors employed,
the processing core and the implemented
methodology. For the case of sensors, they
are used to get distance measurements from
obstacles. Ultrasonic sensors have been widely
used in prototypes because of their low cost and
fast responses, however they have some noise
problems, which can be improved with software.
Another alternative is the infrared sensors (IR),
but they are limited in distance and visible light
affects their performance as presented in [15].
Other systems use laser range finders, but they
are not as cheap as ultrasonic sensors [5]. It
is certainly true that a big number of sensors
comprises more environment information for the
controller, but this outcomes in a more complex
control [16]. In those cases, if the processor is
limited in resources the response will be slow.

The other aspect to consider is the processing
core. In Table 1, all projects were implemented
using microcontrollers or computers, and just
one of them used real-time hardware to control
the motors rotation speed [21]. In contrast,
there are parallel architectures which allow data
to access the resources at the same moment,
and they guarantee the execution in a time
period. The real-time hardware, like Field Gate
Programmable Array (FPGA) has proved to be
very efficient and reliable, and there are a lot
of advantages about configuring a controller in
the FPGA instead of using a computer or any
microcontroller [22].

Finally, in relation with the implemented
algorithm to avoid obstacles, the Mamdami
methodology is used in [14], [18], [15], [16], [17]
and [23]. Mamdani is a predominant inference
technique for fuzzy logic controllers based on
human experience. In all those prototypes, static
inputs are used to compute the output of the
controller (static inputs mean current time data),
however more information can be obtained from
the past samples. That information is known
as dynamic, and can be used as extra inputs
for the controller to improve the whole system
performance.
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Table 1. Main works developed using fuzzy logic for an Electric Wheelchair (EW)
Ref. Description

[13] Two fuzzy controllers are used: one for joining a target specified by specifying an (x, y)
coordinate and the other for avoiding obstacles.

[14] The fuzzy controller considers distance, presence and direction from the objects to decide if
it necessary to change the trajectory.

[18] It uses two fuzzy controllers, one to determine actions from the flex sensors and the other for
obstacle avoidance based in ultrasonic sensors. Preference is given to the fingertip control if
obstacles are far and to the obstacle avoidance system if objects are close.

[15] It includes an obstacle avoidance control which uses IR sensors, as well as a contour following
control. Both are fuzzy logic controllers.

[20] Utilizes FPGA technology in a wheelchair combined with a fuzzy logic control designed to
manipulate the rotation speed of the driving motors. It is not a navigation control.

[16] The fuzzy controller is based in the information given by eight sonar sensors and the joystick.
Inference system is based in that information to control direction and speed of the wheelchair.

[19] The fuzzy control is focused on matching the position of a wheelchair in a sidewalk network
map of an urban area, by using a GPS.

[17] The fuzzy logic controller is designed to alternate between manual and automatic navigation
depending of near obstacles. This assures the switching to be gradual. The automatic
controller is also based in fuzzy logic to avoid obstacles.

[23] The controller is used to determine the operator orders by using a seat pressure sensor and
body movements as the interface. The inputs for the inference system are the x and y velocity
and acceleration of human gravity center. The prototype includes omnidirectional wheels for
moving in every direction.

This work proposes a dynamic fuzzy logic
controller for an EW navigation system, which
utilizes only three ultrasonic sensors. Extra
information is computed from the distance
measurements as additional inputs for the
controller in order to get better results.
Implementation was done first in software
running in Windows 7, and then in the FPGA
chip embedded in a cRIO 9014 to guarantee data
processing in real time.

METHODOLOGY

The electric wheelchair structural design

The system described in this section is named as
“The software implementation”. A commercial
electric wheelchair by Quickie, model P222-SE,
was adapted with the hardware shown in Figure
2. The NI USB-6211 is a data acquisition module
used to generate the voltages that move the EW
motors. Two analog channels are used: one
for forward-backward movement and another for

steering left-right actions.
In addition, three Parallax PING)))

ultrasonic sensors were installed in the
wheelchair at different positions: front left
(S1), front right (S2) and back (S3). The
general information regarding the ultrasonic
sensors is presented below (more information
in [24]). They detect objects by emitting a
short ultrasonic burst and then “listening” the
echo. The sensors normally emits a short
40 kHz burst under the operation of a host
digital system (trigger pulse), for example a
microcontroller. This burst travels through the
air, hits an object and then bounces back to the
sensor. The PING))) sensor provides an output
pulse to the host that will terminate when the
echo is detected, hence the width of this pulse
corresponds to the distance to the target. The
principle of operation of these sensors is shown
in Figure 3.

The microcontroller block is a Basic Stamp
2 (BS2-IC), a 20 MHz speed processor made
by Parallax. This microcontroller acquires data
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predominant inference technique for {\it fuzzy logic} 
controllers based on human experience. In all those 
prototypes, static inputs are used to compute the output 
of the controller (static inputs mean current time data), 
however more information can be obtained from the 
past samples. That information is known as dynamic, 
and can be used as extra inputs for the controller to 
improve the whole system performance. This work 
proposes a dynamic {\it fuzzy logic} controller for an 
EW navigation system, which utilizes only three 
ultrasonic sensors. Extra information is computed from 
the distance measurements as additional inputs for the 
controller in order to get better results. Implementation 
was done first in software running in Windows 7, and 
then in the FPGA chip embedded in a cRIO 9014 to 
guarantee data processing in real time.  

METHODOLOGY 
 
The electric wheelchair structural design  
  
The system described in this section is named as “The 
software implementation”. A commercial electric 
wheelchair by Quickie, model P222-SE, was adapted 
with the hardware shown in Figure	   2. The NI USB-
6211 is a data acquisition module used to generate the 
voltages that move the EW motors. Two analog 
channels are used: one for forward-backward 
movement and another for steering left-right actions.  
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Figure	  2.	  Components	  of	  the	  wheelchair	  system	  implemented	  in	  
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In addition, three Parallax PING))) ultrasonic sensors 
were installed in the wheelchair at different positions: 
front left (S1), front right (S2) and back (S3). The 
general information regarding the ultrasonic sensors is 
presented below (more information in [24]). They 
detect objects by emitting a short ultrasonic burst and 
then "listening" the echo. The sensors normally emits 
a short 40 kHz burst under the operation of a host 
digital system (trigger pulse), for example a 
microcontroller. This burst travels through the air, hits 

an object and then bounces back to the sensor. The 
PING))) sensor provides an output pulse to the host 
that will terminate when the echo is detected, hence 
the width of this pulse corresponds to the distance to 
the target. The principle of operation of these sensors 
is shown in Figure 3. 
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operation	  described	  in	  their	  manual	  [33]	  

The microcontroller block is a Basic Stamp 2 (BS2-
IC), a 20 MHz speed processor made by Parallax. 
This microcontroller acquires data from the 
ultrasonic sensors, converts it into distance 
measurements and sends that information via serial 
communication to the interface hosted in a laptop. 
The microcontroller is configured to receive distance 
samples every 100 ms from the sensors. Finally, the 
interface to operate the electric wheelchair was 
programed in LabVIEW 2013. It receives distance 
data from the BS2-IC and sends voltage operation 
values to the acquisition module 6211. This interface 
allows the user to move the wheelchair with virtual 
controls and to observe the measured distances to 
objects (in centimeters). Furthermore, the {\it fuzzy 
logic} controller (FLC) was integrated to execute 
automatic actions based in those measurements.  

Navigation scenarios analysis  
 
The wheelchair must move in any environment with 
static objects like walls, doors, hallways; and 
dynamic objects, which suddenly appear like a person 
walking. When an object is detected in the path, the 
controller computes which movement or steer action 
is going to be performed. It is desirable that in every 
configuration, the system should go forward in a 
straight route avoiding obstacles. In Figure 4 are 
presented four configurations to analyze how the 
system behaves, which inputs are considered and 
what actions are needed to do in every case. With this 
analyses is determined the rule base for the fuzzy 
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with the hardware shown in Figure	   2. The NI USB-
6211 is a data acquisition module used to generate the 
voltages that move the EW motors. Two analog 
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The microcontroller block is a Basic Stamp 2 (BS2-
IC), a 20 MHz speed processor made by Parallax. 
This microcontroller acquires data from the 
ultrasonic sensors, converts it into distance 
measurements and sends that information via serial 
communication to the interface hosted in a laptop. 
The microcontroller is configured to receive distance 
samples every 100 ms from the sensors. Finally, the 
interface to operate the electric wheelchair was 
programed in LabVIEW 2013. It receives distance 
data from the BS2-IC and sends voltage operation 
values to the acquisition module 6211. This interface 
allows the user to move the wheelchair with virtual 
controls and to observe the measured distances to 
objects (in centimeters). Furthermore, the {\it fuzzy 
logic} controller (FLC) was integrated to execute 
automatic actions based in those measurements.  

Navigation scenarios analysis  
 
The wheelchair must move in any environment with 
static objects like walls, doors, hallways; and 
dynamic objects, which suddenly appear like a person 
walking. When an object is detected in the path, the 
controller computes which movement or steer action 
is going to be performed. It is desirable that in every 
configuration, the system should go forward in a 
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presented four configurations to analyze how the 
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Figure 3. Figure 3. Parallax PING))) ultrasonic
sensors principle of operation described in their
manual [33].

from the ultrasonic sensors, converts it
into distance measurements and sends that
information via serial communication to the
interface hosted in a laptop. The microcontroller
is configured to receive distance samples every
100 ms from the sensors. Finally, the interface to
operate the electric wheelchair was programed
in LabVIEW 2013. It receives distance data
from the BS2-IC and sends voltage operation
values to the acquisition module 6211. This
interface allows the user to move the wheelchair
with virtual controls and to observe the
measured distances to objects (in centimeters).
Furthermore, the fuzzy logic controller (FLC)
was integrated to execute automatic actions
based in those measurements.

Navigation scenarios analysis

The wheelchair must move in any environment
with static objects like walls, doors, hallways;
and dynamic objects, which suddenly appear
like a person walking. When an object is
detected in the path, the controller computes
which movement or steer action is going to

controller.  
 

S1 S2

S3

S1 S2

S3

S2S1 S2S1

S2

a) b)

c) d) 	  
Figure	   4.	   Navigation	   scenarios	   a)	   static	   obstacles,	   b)	   dynamic	  
obstacles,	  c)	  turning	  corners,	  d)	  Straight	  navigation. 

The configuration indicated in Figure 4.a. shows 
the sensors S1, S2 and S3 blocked by objects at a 
distance considered “close”. Consequently, the action 
is to steer left or right to avoid the blocking object. The 
second scenario presented in Figure 4.b. shows 
dynamic and static obstacles moving either around the 
sensors S1 or S2. When an object appears suddenly, 
the EW must avoid crashing with it. The third 
configuration presented in Figure 4.c. shows if there is 
a steering action that must be carried out for a long 
time to turn over a corner (the blocked sensor stills in 
that same state until the corner is over). Finally, the last 
navigation case is a straightforward trajectory observed 
in Figure 4.d. It is desirable that the wheelchair moves 
in the middle of a hallway, and maintain same distance 
between left and right walls.  
 
{\it fuzzy logic} navigation strategies  
 
Three {\it fuzzy logic} controllers were designed after 
the analysis of the configurations. Figure	   5 shows the 
strategies proposed for navigation. 
{\it Strategy-A}. It uses as inputs the distance 
measurements from left, right and back sensors. The 
idea is simple, when a sensor is blocked the controller 
calculates a direction to steer. Observe that these inputs 
are static because they are the current data taken from 
sensor.  
{\it Strategy-B}. It uses the same logic as in Strategy-A, 
but additionally it considers past samples from sensors 
S1 and S2 as inputs to detect dynamic objects. The 
inputs labeled as dS1/dt and dS2/dt are defined as 

delayed data, thus s1 is the current distance and 
dS1/dt is the last past value obtained. In addition, this 
strategy uses as an input the arithmetic mean of 16 
samples collected from steering past actions (D 
output) performed by the controller. 
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Figure	  5.	  Fuzzy	  controller	  structures	  designed	  for	  approaches	  A,	  
B	  and	  C	   

{\it Strategy-C}. This controller is based in the 
previous strategies, but it includes another input to 
make straighter trajectories. This input is obtained by 
subtracting S2 from S1. If this input is included, the 
EW tries to stay at the center of the path. 12 rules 
were proposed for this strategy, the next cases are 
described next: 

 
• Rule 1, 2, 3. Left, right and back sensors are 

completely blocked. 
• Rules 4, 5. Chair is blocked in one side, left 

or right. 
• Rules 6, 7, 8. Chair is blocked in both sides 

simultaneously  
• Rules 9, 10, 11. All sensors are in the “far” 

set. 
• Rule 12. An object appears suddenly. 

Figure 4. Navigation scenarios a) static
obstacles, b) dynamic obstacles, c) turning
corners, d) Straight navigation.

be performed. It is desirable that in every
configuration, the system should go forward in
a straight route avoiding obstacles. In Figure 4
are presented four configurations to analyze how
the system behaves, which inputs are considered
and what actions are needed to do in every case.
With this analyses is determined the rule base
for the fuzzy controller.

The configuration indicated in Figure 4.a.
shows the sensors S1, S2 and S3 blocked
by objects at a distance considered “close”.
Consequently, the action is to steer left or right
to avoid the blocking object. The second scenario
presented in Figure 4.b. shows dynamic and
static obstacles moving either around the sensors
S1 or S2. When an object appears suddenly,
the EW must avoid crashing with it. The third
configuration presented in Figure 4.c. shows if
there is a steering action that must be carried
out for a long time to turn over a corner (the
blocked sensor stills in that same state until the
corner is over). Finally, the last navigation case
is a straightforward trajectory observed in Figure
4.d. It is desirable that the wheelchair moves
in the middle of a hallway, and maintain same
distance between left and right walls.
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Fuzzy logic navigation strategies

Three fuzzy logic controllers were designed after
the analysis of the configurations. Figure 5 shows
the strategies proposed for navigation.
Strategy-A. It uses as inputs the distance
measurements from left, right and back sensors.
The idea is simple, when a sensor is blocked the
controller calculates a direction to steer. Observe
that these inputs are static because they are the
current data taken from sensor.
Strategy-B. It uses the same logic as in Strategy-
A, but additionally it considers past samples
from sensors S1 and S2 as inputs to detect
dynamic objects. The inputs labeled as dS1/dt
and dS2/dt are defined as delayed data, thus s1 is
the current distance and dS1/dt is the last past
value obtained. In addition, this strategy uses
as an input the arithmetic mean of 16 samples
collected from steering past actions (D output)
performed by the controller.
Strategy-C. This controller is based in the
previous strategies, but it includes another input
to make straighter trajectories. This input is
obtained by subtracting S2 from S1. If this input
is included, the EW tries to stay at the center
of the path. 12 rules were proposed for this
strategy, the next cases are described next:

• Rule 1, 2, 3. Left, right and back sensors
are completely blocked.

• Rules 4, 5. Chair is blocked in one side, left
or right.

• Rules 6, 7, 8. Chair is blocked in both sides
simultaneously

• Rules 9, 10, 11. All sensors are in the “far”
set.

• Rule 12. An object appears suddenly.

The complete rule set is shown in Table 2.
Variables are defined in terms of fuzzy sets

termed as:

S1, S2, S3 → C (Close), F (Far)

ds1, ds2 → GF (Getting far)

S → P (Positive), Z (Zero), N (Negative)

controller.  
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c) d) 	  
Figure	   4.	   Navigation	   scenarios	   a)	   static	   obstacles,	   b)	   dynamic	  
obstacles,	  c)	  turning	  corners,	  d)	  Straight	  navigation. 

The configuration indicated in Figure 4.a. shows 
the sensors S1, S2 and S3 blocked by objects at a 
distance considered “close”. Consequently, the action 
is to steer left or right to avoid the blocking object. The 
second scenario presented in Figure 4.b. shows 
dynamic and static obstacles moving either around the 
sensors S1 or S2. When an object appears suddenly, 
the EW must avoid crashing with it. The third 
configuration presented in Figure 4.c. shows if there is 
a steering action that must be carried out for a long 
time to turn over a corner (the blocked sensor stills in 
that same state until the corner is over). Finally, the last 
navigation case is a straightforward trajectory observed 
in Figure 4.d. It is desirable that the wheelchair moves 
in the middle of a hallway, and maintain same distance 
between left and right walls.  
 
{\it fuzzy logic} navigation strategies  
 
Three {\it fuzzy logic} controllers were designed after 
the analysis of the configurations. Figure	   5 shows the 
strategies proposed for navigation. 
{\it Strategy-A}. It uses as inputs the distance 
measurements from left, right and back sensors. The 
idea is simple, when a sensor is blocked the controller 
calculates a direction to steer. Observe that these inputs 
are static because they are the current data taken from 
sensor.  
{\it Strategy-B}. It uses the same logic as in Strategy-A, 
but additionally it considers past samples from sensors 
S1 and S2 as inputs to detect dynamic objects. The 
inputs labeled as dS1/dt and dS2/dt are defined as 

delayed data, thus s1 is the current distance and 
dS1/dt is the last past value obtained. In addition, this 
strategy uses as an input the arithmetic mean of 16 
samples collected from steering past actions (D 
output) performed by the controller. 
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Figure	  5.	  Fuzzy	  controller	  structures	  designed	  for	  approaches	  A,	  
B	  and	  C	   

{\it Strategy-C}. This controller is based in the 
previous strategies, but it includes another input to 
make straighter trajectories. This input is obtained by 
subtracting S2 from S1. If this input is included, the 
EW tries to stay at the center of the path. 12 rules 
were proposed for this strategy, the next cases are 
described next: 

 
• Rule 1, 2, 3. Left, right and back sensors are 

completely blocked. 
• Rules 4, 5. Chair is blocked in one side, left 

or right. 
• Rules 6, 7, 8. Chair is blocked in both sides 

simultaneously  
• Rules 9, 10, 11. All sensors are in the “far” 

set. 
• Rule 12. An object appears suddenly. 

Figure 5. Fuzzy controller structures designed
for approaches A, B and C

M → N (Negative), MF (Medium Fast), B
(Backward), F (Forward), MF (Middle
Forward)

D → L (Left), ML (Medium Left), N
(Negative), MR (Medium Right), R
(Right)

Y → TR (Turning Right), TN (Turning Null),
TL (Turning Left)

Input variables description

The fuzzy sets used for every variable are
described next:
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Table 2. The software implementation rule set (Strategy-C)
1 s : N ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
2 s : Z ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
3 s : P ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
4 s : N ∩ s1 : F ∩ s2 : C ⇒M : MF ∩D : L
5 s : P ∩ s1 : C ∩ s2 : F ⇒M : MF ∩D : R
6 s : N ∩ s1 : C ∩ s2 : C ∩ Y : TR⇒M : B ∩D : R
7 s : Z ∩ s1 : C ∩ s2 : C ∩ Y : TN ⇒M : B ∩D : N
8 s : P ∩ s1 : C ∩ s2 : C ∩ Y : TL⇒M : B ∩D : L
9 s : N ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : ML
10 s : Z ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : N
11 s : P ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : MR
12 ds1 : GF ∪ ds2 : GF ⇒M : MF ∩D : N
Where ∩ = Tm = min(x, y).

 
The complete rule set is shown in Table 2. 
 
Table	  2.	  The	  software	  implementation	  rule	  set	  (Strategy-‐C)	  

1 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁 
2 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁 
3 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁 
4 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷: 𝐿 
5 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑅 
6 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝑅 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑅 
7 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝑁 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑁 
8 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝐿 ⇒ 𝑀:𝐵 ⊓ 𝐷: 𝐿 
9 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝐿 
10 𝑠:𝑍 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑁 
11 𝑠:𝑃 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝑅 
12 𝑑𝑠!:𝐺𝐹 ⊔ 𝑑𝑠!:𝐺𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑁 

 
Where   ⊓= T! = min x, y . 
 
Variables are defined in terms of fuzzy sets termed as: 
  
S1, S2, S3 → C (Close), F (Far) 
ds1, ds2 → GF (Getting far)  
S → P (Positive), Z (Zero), N (Negative) 
M → N (Negative), MF (Medium Fast), B (Backward), 
F (Forward), MF (Middle Forward) 
D → L (Left), ML (Medium Left), N (Negative), MR 
(Medium Right), R (Right)  
Y → TR (Turning Right), TN (Turning Null), TL 
(Turning Left) 
 
Inputs variables description 

 
The fuzzy sets used for every variable are described 
next: 
 
{\it Distance}. This variable is defined with two fuzzy 
sets: close (“C”) and far (“F”) and is specified for S1, 
S2 and S3 sensors. The distance range of these inputs 
was considered as much as necessary to avoid 
collisions as shown in Figure	  6.a. 
{\it Distance differential}. These inputs were calculated 
from S1 and S2. The “dS1” and “dS2” inputs are 
defined by two fuzzy sets: getting fast (“GF”) and 
getting slow (“GS”). They are useful for the system to 
take decisions by considering the approaching of 
dynamic objects to the wheelchair. Membership 
functions of these inputs are presented in Figure	  6.b. 
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Figure	  6.	  Fuzzy	  Input	  definitions	  and	  memberships	  functions	  a)	  
distance,	  b)	  distance	  differential,	  c)	  past	  steering	  action	  and	  d)	  

sensor	  difference.	  

 
{\it Past steering action}. It is defined from the 
collected information about the past steering values 
that indicate an action performed for a long time. 
This input named “Y” is obtained from the “D” 
output and is defined with 3 membership functions as 
shown in Figure	   6.c: turning left, turning null and 
turning right (“TL”, “TN” and “TR”, respectively). 
 
{\it Sensor difference}. It is obtained by subtracting 
S1 from S2 and determines if the wheelchair is 
deviating negatively, positively or zero (“N”, “P”, 
and “Z”). If the difference is negative, the wheelchair 
steers to the left side; if positive, steers to the right 
side of the reference. Membership functions are 
shown in Figure	  6.d. 
 
Output variables description 
 
Output variables indicate the movement or steering 
action of the wheelchair: forward, backward, left or 
right. The obtained values are defuzzified into analog 
voltages. Figure	  7 shows the sets definition for these 
outputs. Their ranges are adjusted to the functional 
voltages for moving the motors and they are not 
symmetrical.   
{\it Movement}. The “M” output corresponds to 
analog voltage channel 1, and it is defined by five 
fuzzy sets named Backward, Middle Backward, Null, 
Middle Forward and Forward (“B”, “MB”, “N”, 
“MF”, “F”). These five membership functions allow 
the system to go backward or forward in different 
speeds.  
{\it Direction}. This output (labelled as “D”) activates 
analog channel 2 and is defined by five sets named 
Left, Middle Left, Null, Middle Right, Right 
(“L”,“ML”,“N”, “MR”, “R”). 

Figure 6. Fuzzy Input definitions and memberships functions a) distance, b) distance differential, c)
past steering action and d) sensor difference.

Distance. This variable is defined with two
fuzzy sets: close (“C”) and far (“F”) and
is specified for S1, S2 and S3 sensors.
The distance range of these inputs was
considered as much as necessary to avoid
collisions as shown in Figure 6.a.

Distance differential. These inputs were
calculated from S1 and S2. The “dS1”

and “dS2” inputs are defined by two fuzzy
sets: getting fast (“GF”) and getting
slow (“GS”). They are useful for the
system to take decisions by considering
the approaching of dynamic objects to the
wheelchair. Membership functions of these
inputs are presented in Figure 6.b.
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Figure	   7.	   Fuzzy	   outputs	   definition	   a)	   Movement,	   b)	   Direction	  
outputs 

 
Static and dynamic fuzzy controllers 
 
Navigation circumstances presented above could be 
used to define static and dynamic {\it fuzzy logic} 
controllers. A static FLC operates with the current 
sensor data to obtain the outputs (Strategy-A), but a 
dynamic FLC considers current and past values from 
sensors to obtain the outputs (Strategies B and C). A 
study of a static controller behavior is presented below 
in order to see how the information from the past is not 
affecting the firing rules. It was used the proposed 
Strategy-C in this analysis.   

The study case has the following conditions: 
there are objects blocking the sensors S1 and S2, 
approaching at different speeds from a distance 
considered far. This is illustrated in Figure	  8. 

If the controller has a set of fixed linguistic rules 
(as those in Table	   2) and it is assumed that the rules 
(10, 9, 7 and 4) are affected for specific inputs. The 
firing strength graphs obtained in this case study are 
shown in Figure	  9.  
The firing strength shows how the rules change 
according to the movement of the EW. The Speed 
response is presented in Figure	   10.a. which shows 
actions executed. In the first configuration, distance 
registered in sensors S1 and S2 decrease at the same 
rate. In the velocity graph as the distance becomes 
small, forward speed is needed to slow down to avoid 
collision up to the moment it changes direction to 
backward. Meanwhile, in the angular velocity response 
no change in direction is registered. However, for the 
second response presented in Figure	   10.b. 
corresponding to the other configuration, forward 
speed decreases slowly until it changes to backward 
when both sensors are completely blocked. Because S2 
arrives first at the close region, a left angular velocity 
is registered. 
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Figure	   8.	   Case	   Study	   regarding	   the	   configuration	   when	   both	  
sensors	   change	   values	   (a)	   at	   same	   speed	   and	   (b)	   S1	   changes	  
faster	  than	  S2 
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Figure	  9.	  Firing	  strength	  graphs	  for	  conditions	  (a)	  obstacles	  
moving	  at	  the	  same	  speed	  (b)	  obstacles	  moving	  at	  the	  different	  
speed 
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Figure 7. Fuzzy outputs definition a) Movement, b) Direction outputs

Past steering action. It is defined from
the collected information about the past
steering values that indicate an action
performed for a long time. This input
named “Y” is obtained from the “D”
output and is defined with 3 membership
functions as shown in Figure 6.c: turning
left, turning null and turning right (“TL”,
“TN” and “TR”, respectively).

Sensor difference. It is obtained by
subtracting S1 from S2 and determines
if the wheelchair is deviating negatively,
positively or zero (“N”, “P”, and “Z”). If
the difference is negative, the wheelchair
steers to the left side; if positive, steers to
the right side of the reference. Membership
functions are shown in Figure 6.d.

Output variables description

Output variables indicate the movement or
steering action of the wheelchair: forward,
backward, left or right. The obtained values
are defuzzified into analog voltages. Figure 7
shows the sets definition for these outputs. Their
ranges are adjusted to the functional voltages for
moving the motors and they are not symmetrical.

Movement. The “M” output corresponds
to analog voltage channel 1, and it is
defined by five fuzzy sets named Backward,
Middle Backward, Null, Middle Forward
and Forward (“B”, “MB”, “N”, “MF”,
“F”). These five membership functions
allow the system to go backward or forward
in different speeds.

Direction. This output (labelled as “D”)
activates analog channel 2 and is defined

by five sets named Left, Middle Left, Null,
Middle Right, Right (“L”, “ML”, “N”,
“MR”, “R”).

Static and dynamic fuzzy controllers

Navigation circumstances presented above could
be used to define static and dynamic fuzzy
logic controllers. A static FLC operates with
the current sensor data to obtain the outputs
(Strategy-A), but a dynamic FLC considers
current and past values from sensors to obtain
the outputs (Strategies B and C). A study of a
static controller behavior is presented below in
order to see how the information from the past
is not affecting the firing rules. It was used the
proposed Strategy-C in this analysis.

The study case has the following conditions:
there are objects blocking the sensors S1 and S2,
approaching at different speeds from a distance
considered far. This is illustrated in Figure 8.

If the controller has a set of fixed linguistic
rules (as those in Table 2) and it is assumed that
the rules (10, 9, 7 and 4) are affected for specific
inputs. The firing strength graphs obtained in
this case study are shown in Figure 9.

The firing strength shows how the rules
change according to the movement of the EW.
The Speed response is presented in Figure 10.a.
which shows actions executed. In the first
configuration, distance registered in sensors S1
and S2 decrease at the same rate. In the velocity
graph as the distance becomes small, forward
speed is needed to slow down to avoid collision up
to the moment it changes direction to backward.
Meanwhile, in the angular velocity response no
change in direction is registered. However,
for the second response presented in Figure
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Static and dynamic fuzzy controllers 
 
Navigation circumstances presented above could be 
used to define static and dynamic {\it fuzzy logic} 
controllers. A static FLC operates with the current 
sensor data to obtain the outputs (Strategy-A), but a 
dynamic FLC considers current and past values from 
sensors to obtain the outputs (Strategies B and C). A 
study of a static controller behavior is presented below 
in order to see how the information from the past is not 
affecting the firing rules. It was used the proposed 
Strategy-C in this analysis.   

The study case has the following conditions: 
there are objects blocking the sensors S1 and S2, 
approaching at different speeds from a distance 
considered far. This is illustrated in Figure	  8. 

If the controller has a set of fixed linguistic rules 
(as those in Table	   2) and it is assumed that the rules 
(10, 9, 7 and 4) are affected for specific inputs. The 
firing strength graphs obtained in this case study are 
shown in Figure	  9.  
The firing strength shows how the rules change 
according to the movement of the EW. The Speed 
response is presented in Figure	   10.a. which shows 
actions executed. In the first configuration, distance 
registered in sensors S1 and S2 decrease at the same 
rate. In the velocity graph as the distance becomes 
small, forward speed is needed to slow down to avoid 
collision up to the moment it changes direction to 
backward. Meanwhile, in the angular velocity response 
no change in direction is registered. However, for the 
second response presented in Figure	   10.b. 
corresponding to the other configuration, forward 
speed decreases slowly until it changes to backward 
when both sensors are completely blocked. Because S2 
arrives first at the close region, a left angular velocity 
is registered. 
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Figure	   8.	   Case	   Study	   regarding	   the	   configuration	   when	   both	  
sensors	   change	   values	   (a)	   at	   same	   speed	   and	   (b)	   S1	   changes	  
faster	  than	  S2 
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Figure	  9.	  Firing	  strength	  graphs	  for	  conditions	  (a)	  obstacles	  
moving	  at	  the	  same	  speed	  (b)	  obstacles	  moving	  at	  the	  different	  
speed 
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Figure 8. Case Study regarding the configuration
when both sensors change values (a) at same
speed and (b) S1 changes faster than S2.
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Static and dynamic fuzzy controllers 
 
Navigation circumstances presented above could be 
used to define static and dynamic {\it fuzzy logic} 
controllers. A static FLC operates with the current 
sensor data to obtain the outputs (Strategy-A), but a 
dynamic FLC considers current and past values from 
sensors to obtain the outputs (Strategies B and C). A 
study of a static controller behavior is presented below 
in order to see how the information from the past is not 
affecting the firing rules. It was used the proposed 
Strategy-C in this analysis.   

The study case has the following conditions: 
there are objects blocking the sensors S1 and S2, 
approaching at different speeds from a distance 
considered far. This is illustrated in Figure	  8. 

If the controller has a set of fixed linguistic rules 
(as those in Table	   2) and it is assumed that the rules 
(10, 9, 7 and 4) are affected for specific inputs. The 
firing strength graphs obtained in this case study are 
shown in Figure	  9.  
The firing strength shows how the rules change 
according to the movement of the EW. The Speed 
response is presented in Figure	   10.a. which shows 
actions executed. In the first configuration, distance 
registered in sensors S1 and S2 decrease at the same 
rate. In the velocity graph as the distance becomes 
small, forward speed is needed to slow down to avoid 
collision up to the moment it changes direction to 
backward. Meanwhile, in the angular velocity response 
no change in direction is registered. However, for the 
second response presented in Figure	   10.b. 
corresponding to the other configuration, forward 
speed decreases slowly until it changes to backward 
when both sensors are completely blocked. Because S2 
arrives first at the close region, a left angular velocity 
is registered. 
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Figure	   8.	   Case	   Study	   regarding	   the	   configuration	   when	   both	  
sensors	   change	   values	   (a)	   at	   same	   speed	   and	   (b)	   S1	   changes	  
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Figure	  9.	  Firing	  strength	  graphs	  for	  conditions	  (a)	  obstacles	  
moving	  at	  the	  same	  speed	  (b)	  obstacles	  moving	  at	  the	  different	  
speed 
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Figure 9. Firing strength graphs for conditions
(a) obstacles moving at the same speed (b)
obstacles moving at the different speed.
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Figure	   10.	   The	   velocity	   graphs	   for	   configurations	   (a)	   obstacles	  
moving	  at	  the	  same	  speed	  (b)	  obstacles	  moving	  at	  different	  speed.	  

The FPGA controller implementation  
 
In fact, the controllers implemented in software 
platform cannot operate under deterministic processing 
time [25]; hence, the processing cycles running on 
LabVIEW cannot be greater than milliseconds and the 
real time applications which need deterministic time do 
not use a software platform.   
For the EW application is very important to ensure that 
the system will execute without interruptions or 
possible operating system failures. In addition, it is 
necessary to have a very fast response because a 
person’s integrity depends on it. Hardware designed 
controllers can solve the mentioned drawbacks of the 
software implemented ones. Frequently, FPGAs are 
used because they are accessible in different locations 
as embedded systems, and because of their processing 
characteristics the speed range of nanoseconds can be 
reached for the operating cycles. If the FPGA is used, 
the information is processed inside the chip and the 
computer is required only for setting the initial 
conditions of the FCL, thus no operating system 
interruptions appear. Based in those advantages, it was 
proposed an alternative version of the system named as 

“The hardware implementation” which components 
are shown in Figure	  11.  
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Figure	  11.	  Components	  of	  the	  wheelchair	  system	  implemented	  

in	  the	  FPGA 

It was used a NI Compact-RIO (c-RIO) 9014 to 
implement a deterministic real-time system. The c-
RIO combines the real-time approach and 
reconfigurable FPGA technologies in the same device 
for embedded control, data acquisition and analysis. 
This device supports interchangeable modules for I/O 
to access data to the Spartan-3 Xilinx chip with 3 
million equivalent gates, besides it integrates a 
40MHz clock. In this hardware implementation the 
ultrasonic sensors are connected directly to the 
device, thus the processing time is reduced because it 
is not necessary a serial communication port as in the 
software system. For all these reasons, the hardware 
implementation is expected to provide better results. 
 
Only 2/4 analog output channels from the NI C-
Series 9263 module and 6/8 high speed digital I/O 
from the NI 9401 C-Series module were used. DIO0-
DIO3 were configured as digital inputs and DIO4-
DIO7 as outputs. The interface uses a diode and a 
resistance to implement a bidirectional ultrasonic line 
in the NI 9401 module as shown in Figure	   12. As 
explained with the microcontroller, the FPGA 
implementation sends a pulse to the ultrasonic sensor 
and waits to receive the response. It is used the same 
sampling time as in the software implementation: 100 
ms. The 9263 analog output module is used for 
sending control voltage (channels AO0 and A01) to 
the wheelchair´s joystick, in the same way the NI-
DAQ9611 does in the software implementation.  
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Figure 10. The velocity graphs for configurations
(a) obstacles moving at the same speed (b)
obstacles moving at different speed.

10.b. corresponding to the other configuration,
forward speed decreases slowly until it changes
to backward when both sensors are completely
blocked. Because S2 arrives first at the close
region, a left angular velocity is registered.

The FPGA controller implementation

In fact, the controllers implemented in software
platform cannot operate under deterministic
processing time [25]; hence, the processing cycles
running on LabVIEW cannot be greater than
milliseconds and the real time applications which
need deterministic time do not use a software
platform.
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device, thus the processing time is reduced because it 
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software system. For all these reasons, the hardware 
implementation is expected to provide better results. 
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explained with the microcontroller, the FPGA 
implementation sends a pulse to the ultrasonic sensor 
and waits to receive the response. It is used the same 
sampling time as in the software implementation: 100 
ms. The 9263 analog output module is used for 
sending control voltage (channels AO0 and A01) to 
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Figure 11. Components of the wheelchair system implemented in the FPGA.
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Figure 12. Digital I/O and analog output modules configuration.

For the EW application is very important
to ensure that the system will execute without
interruptions or possible operating system
failures. In addition, it is necessary to have a
very fast response because a person’s integrity
depends on it. Hardware designed controllers can
solve the mentioned drawbacks of the software
implemented ones. Frequently, FPGAs are used
because they are accessible in different locations
as embedded systems, and because of their
processing characteristics the speed range of
nanoseconds can be reached for the operating
cycles. If the FPGA is used, the information
is processed inside the chip and the computer is

required only for setting the initial conditions of
the FCL, thus no operating system interruptions
appear. Based in those advantages, it was
proposed an alternative version of the system
named as “The hardware implementation” which
components are shown in Figure 11.

It was used a NI Compact-RIO (c-RIO)
9014 to implement a deterministic real-time
system. The c-RIO combines the real-time
approach and reconfigurable FPGA technologies
in the same device for embedded control,
data acquisition and analysis. This device
supports interchangeable modules for I/O to
access data to the Spartan-3 Xilinx chip with 3
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Figure	  13.	  Maze	  test	  scenario 

 
Control strategies test and validation  
 
A maze was designed for validating the proposed 
controllers under different navigation conditions; all 
the dimensions of the maze are presented in Figure	  13.  
The target of the electric wheelchair is to navigate from 
the initial point to the final one without colliding 
against the walls. 
Notice that the scenario has right angle corners, and for 
security matters flexible walls were used. All the 
experiments were performed with the same start 
position. The strategies A, B, C implemented in 
software and Strategy-C implemented in hardware 
were tested in this maze. 
 

RESULTS 
 
Software implementation 
 
For the software implementation, the FCL strategies 
were realized with the “PID and {\it fuzzy logic} 
Control toolkit” in LabVIEW 2013. The control was 
integrated to the LabVIEW interface as presented in 
the flux diagram shown in Figure	  14.  
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Figure	  14.	  Flux	  diagram	  for	  software	  controller	  implementation 

In Figure	  15 are presented the components assembly 
under the EW seat for the software implementation. 
 

 

	  
Figure	  15.	  Installed	  components	  for	  the	  software	  version	  

 

The hardware implementation	  

Apart from the software version, the hardware 
implementation is described. Tasks done by the real-
time controller are indicated in Figure	   16 and they 
were programmed in the LabVIEW FPGA toolkit. 
The sensors distance to objects are obtained and with 
those data other inputs are computed: dS1, dS2, S. 
Numerical values are normalized to fit the fixed point 
format used by the fuzzy controller for the decision 
making. Obtained outputs are de-normalized to fit 
useful voltages for the EW. 
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Figure 13. Maze test scenario.

million equivalent gates, besides it integrates a
40MHz clock. In this hardware implementation
the ultrasonic sensors are connected directly
to the device, thus the processing time
is reduced because it is not necessary a
serial communication port as in the software
system. For all these reasons, the hardware
implementation is expected to provide better
results.

Only 2/4 analog output channels from the
NI C-Series 9263 module and 6/8 high speed
digital I/O from the NI 9401 C-Series module
were used. DIO0-DIO3 were configured as digital
inputs and DIO4-DIO7 as outputs. The interface
uses a diode and a resistance to implement
a bidirectional ultrasonic line in the NI 9401
module as shown in Figure 12. As explained with
the microcontroller, the FPGA implementation
sends a pulse to the ultrasonic sensor and waits
to receive the response. It is used the same
sampling time as in the software implementation:
100 ms. The 9263 analog output module is
used for sending control voltage (channels AO0
and A01) to the wheelchair’s joystick, in the
same way the NI-DAQ9611 does in the software
implementation.

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions;
all the dimensions of the maze are presented in
Figure 13. The target of the electric wheelchair
is to navigate from the initial point to the final
one without colliding against the walls.
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Figure 15. Installed components for the software
version

Notice that the scenario has right angle
corners, and for security matters flexible walls
were used. All the experiments were performed
with the same start position. The strategies
A, B, C implemented in software and Strategy-
C implemented in hardware were tested in this
maze.

RESULTS

Software implementation

For the software implementation, the FCL
strategies were realized with the “PID and fuzzy
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security matters flexible walls were used. All the 
experiments were performed with the same start 
position. The strategies A, B, C implemented in 
software and Strategy-C implemented in hardware 
were tested in this maze. 
 

RESULTS 
 
Software implementation 
 
For the software implementation, the FCL strategies 
were realized with the “PID and {\it fuzzy logic} 
Control toolkit” in LabVIEW 2013. The control was 
integrated to the LabVIEW interface as presented in 
the flux diagram shown in Figure	  14.  
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Figure	  14.	  Flux	  diagram	  for	  software	  controller	  implementation 

In Figure	  15 are presented the components assembly 
under the EW seat for the software implementation. 
 

 

	  
Figure	  15.	  Installed	  components	  for	  the	  software	  version	  

 

The hardware implementation	  

Apart from the software version, the hardware 
implementation is described. Tasks done by the real-
time controller are indicated in Figure	   16 and they 
were programmed in the LabVIEW FPGA toolkit. 
The sensors distance to objects are obtained and with 
those data other inputs are computed: dS1, dS2, S. 
Numerical values are normalized to fit the fixed point 
format used by the fuzzy controller for the decision 
making. Obtained outputs are de-normalized to fit 
useful voltages for the EW. 
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Figure	  16.	  {\it	  fuzzy	  logic}	  controller	  block	  diagram	  implemented	  

in	  the	  FPGA.	  

 
 
 

Figure 16. fuzzy logic controller block diagram

implemented in the FPGA.

logic Control toolkit” in LabVIEW 2013. The
control was integrated to the LabVIEW interface
as presented in the flux diagram shown in Figure
14.

In Figure 15 are presented the components
assembly under the EW seat for the software
implementation.

The hardware implementation

Apart from the software version, the hardware
implementation is described. Tasks done by the
real-time controller are indicated in Figure 16
and they were programmed in the LabVIEW
FPGA toolkit. The sensors distance to objects
are obtained and with those data other inputs
are computed: dS1, dS2, S. Numerical values
are normalized to fit the fixed point format used
by the fuzzy controller for the decision making.
Obtained outputs are de-normalized to fit useful
voltages for the EW.

Variable Y is not considered because S
variable helps the controller to approach the
curves better. The rule set for the FPGA
implementation is shown in Table 3.

 
 
Variable Y is not considered because S variable helps 
the controller to approach the curves better. The rule 
set for the FPGA implementation is shown in Table	  3. 
 
Table	  3.	  The	  FPGA	  implementation	  rule	  set	  

1 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁 
2 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷: 𝐿 
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In Figure	   17 is presented the configured fuzzy 
controller code created on LabVIEW FPGA toolkit, 
constructed with fixed point operations and configured 
as hardware into the FPGA chip. There have been 
labeled five different parts: digital I/O port and line 
selection for sending/receiving data from ultrasonic 
sensors, normalization blocks to scale signals in useful 
ranges for the fuzzy controller, the fuzzy controller 
block (which contains the membership functions, the 
inference engine and the rules base), the output 
normalization blocks for values computed, and finally, 
the analog output channels selected to supply voltage 
for movement and steering actions between 4 and 7 
volts. After the compilation into the FPGA, the 
consumed resources shown in the summary with this 
configuration is shown in the next table: 

 
Table	  4.	  Consumed	  resources	  with	  the	  system	  

Functional 
Block Logo Total 

slices 
Slice 
registers 

Slice 
LUTs 

T1 
Wheelchair 
Control 

NA 9794 9562 14888 

 
Moreover, in Figure	   18 is presented the c-RIO 
installation which is online with the PC in the 
hardware implementation. In figure Figure	   19 is 
presented the complete wheelchair system. 
 
 

	  
Figure	  18.	  NI	  Compact-‐RIO	  installed	  for	  the	  real-‐time	  system	  

	  
Figure	  17.	  {\it	  fuzzy	  logic}	  code	  programmed	  with	  LabVIEW	  FPGA	  toolkit Figure 17. Fuzzy logic code programmed with LabVIEW FPGA toolkit.
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Table 3. The FPGA implementation rule set
1 s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
2 s : N ∩ s1 : F ∩ s2 : C ⇒M : MF ∩D : L
3 s : P ∩ s1 : C ∩ s2 : F ⇒M : MF ∩D : R
4 s : N ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : R
5 s : Z ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : N
6 s : P ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : L
7 s : N ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : ML
8 s : Z ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : N
9 s : P ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : MR
10 ds1 : GF ∪ ds2 : GF ⇒M : MF ∩D : N

Table 4. Consumed resources with the system
Functional Logo Total Slice Slice
Block slices registers LUTs
T1
Wheelchair NA 9794 9562 14888
Control
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as hardware into the FPGA chip. There have been 
labeled five different parts: digital I/O port and line 
selection for sending/receiving data from ultrasonic 
sensors, normalization blocks to scale signals in useful 
ranges for the fuzzy controller, the fuzzy controller 
block (which contains the membership functions, the 
inference engine and the rules base), the output 
normalization blocks for values computed, and finally, 
the analog output channels selected to supply voltage 
for movement and steering actions between 4 and 7 
volts. After the compilation into the FPGA, the 
consumed resources shown in the summary with this 
configuration is shown in the next table: 
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Moreover, in Figure	   18 is presented the c-RIO 
installation which is online with the PC in the 
hardware implementation. In figure Figure	   19 is 
presented the complete wheelchair system. 
 
 

	  
Figure	  18.	  NI	  Compact-‐RIO	  installed	  for	  the	  real-‐time	  system	  

	  
Figure	  17.	  {\it	  fuzzy	  logic}	  code	  programmed	  with	  LabVIEW	  FPGA	  toolkit 

Figure 18. NI Compact-RIO installed for the
real-time system.

In Figure 17 is presented the configured
fuzzy controller code created on LabVIEW
FPGA toolkit, constructed with fixed point
operations and configured as hardware into
the FPGA chip. There have been labeled
five different parts: digital I/O port and
line selection for sending/receiving data from
ultrasonic sensors, normalization blocks to scale
signals in useful ranges for the fuzzy controller,
the fuzzy controller block (which contains the
membership functions, the inference engine and
the rules base), the output normalization blocks
for values computed, and finally, the analog

	  

Figure	   19.	   The	   complete	   system.	   For	   the	   hardware	  
implementation,	  the	   laptop	   is	  only	  used	  for	  setting	  the	  controller	  
initial	  conditions	  and	  to	  register	  data.	  

The maze test validation for the software version  
 
The three strategies A, B, and C implemented in 
LabVIEW were tested, but only the third one was 
completely successful. Figure	  20 presents the observed 
trajectories for the test. Images were taken from an 
upper view and because of that perspective some walls 
look wider. By using strategy-A, the wheelchair 
crashed four times as indicated with arrows in Figure	  
20.a. and it was very close to the left wall, however it 
finished the maze in 1.26 minutes. Strategy-B did not 
finish the maze because wheelchair got stocked in the 
first corner as can be observed in Figure	  20.b. The third 
trajectory corresponds to strategy-C, which was 
completed in 1.10 minutes without colliding. Four 
zones are labelled in Figure	  20.c. as “1”, “2”, “3” and 
“4” to analyze them. It seems that in the middle of the 
curve (zone 2) there was a collision, but it is only a 
perspective effect. 
 

	  
a)	  

	  
b)	  

	  
c)	  

Figure	  20.	  Obtained	  trajectories	  in	  test	  scenario.	  Dots	  represent	  
lateral	  sensor	  position	  during	  the	  route,	  a)	  Strategy	  A,	  b)	  

Strategy	  B,	  c)	  Strategy	  C	  

	  
Software and hardware implementations  
 
Figure	   21 shows the results trajectories observed in 
the hardware and software implementations. It was 
compared the Strategy-C implemented in software 
and the strategy designed for the hardware in the 
maze test.  
 

Figure 19. The complete system. For the
hardware implementation, the laptop is only
used for setting the controller initial conditions
and to register data.

output channels selected to supply voltage for
movement and steering actions between 4 and 7
volts. After the compilation into the FPGA, the
consumed resources shown in the summary with
this configuration is shown in Table 4.

Moreover, in Figure 18 is presented the c-
RIO installation which is online with the PC in
the hardware implementation. In figure Figure
19 is presented the complete wheelchair system.

The maze test validation for the software
version

The three strategies A, B, and C implemented
in LabVIEW were tested, but only the third one
was completely successful. Figure 20 presents
the observed trajectories for the test. Images
were taken from an upper view and because
of that perspective some walls look wider.
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Software and hardware implementations  
 
Figure	   21 shows the results trajectories observed in 
the hardware and software implementations. It was 
compared the Strategy-C implemented in software 
and the strategy designed for the hardware in the 
maze test.  
 

Figure 20. Obtained trajectories in test scenario.
Dots represent lateral sensor position during the
route, a) Strategy A, b) Strategy B, c) Strategy
C.
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Figure	  21.	  Hardware	  and	  software	  trajectory	  tracking	  comparison	  
for	  the	  Strategy-‐C	  using,	  a)	  Computer	  device	  b)	  Compact-‐RIO	   

 
DISCUSSION  
 
Static and dynamic controllers comparative 
 
As presented in Figure	  20, the Strategy-C was the only 
one that completed the maze without colliding. The 
differences between navigation strategies implemented 
and the considerations done about dynamic and static 
controllers are remarkable. A comparison between 
Strategy-A and Strategy C shows that the last one 
results more efficient in time. Further, as presented in 
Figure	   20.c., in the zone labeled as “1” there were 
oscillations caused by the wheelchair approaching to 
the left wall and the controller action trying to correct 
its trajectory. In zone “2”, a continuous soft curve to 
turn is described contrasting the actions observed in 
strategy-A (Figure	  20.a.), where it is notorious that for 
the same curve the steering actions are more 
complicated. In zone “3”, there are more oscillations 
caused by the slow response of the system processing 
data in software. When the computer takes a specific 
action at some time instant, another obstacles is 
detected by sensors. In addition, when the computer 
sends data to the motors they react after some time. 
This phenomenon is repeated several times until 
stabilizes. Finally, in zone “4” the trajectory stabilizes 
and only one abrupt controller correction is noted.  
Other differences between the observed trajectories are 
caused by the dynamic inputs considered in the 
Strategy-C, which are designed to help the controller in 
tasks as turning in a curve. For the static controller 

implemented with Strategy-A, it is distinguished a 
“squared” turn, but for the same zone the dynamic 
controller uses data collected from past actions to 
make decisions.  This paper does not show all the 
possible devices in which the controller could be 
deployed, but it analyzed the performance of the 
proposed controller in order to validate it. Normally, 
micro-controllers are chipper than FPGAs, so it is a 
very attractive possibility to implement this controller 
using micro-controllers.  
 
Comparative between real-time and software 
versions 
 
The hardware version describes smoother trajectories 
and continuous movements, which are better in 
contrast with the abrupt movements obtained with the 
software implementation. The uncertainties exhibited 
in the marked regions of Figure	  21.a. do not occur in 
Figure	  21.b. and the described curve is smoother. In 
this test, the measured time to complete the maze was 
20 seconds, which is really fast compared to that 
obtained in software Strategies A and C (1.26 and 
1.19 seconds, respectively). Those differences 
between both implementations are remarkable. It is 
explained because the hardware version uses a 
dedicated processor to acquire and process data that 
do not depend on any operating system. The target 
processor is networked to a host PC only for the 
graphical interface and data logging. In Table	   5 is 
presented a comparison. 
 
Table	  5.	  Comparison	  table	  between	  hardware	  and	  software	  
implementations	  

Characteristic  Software 
implementation  

Hardware 
implementation  

Trajectories Rough, abrupt  Smooth, clean   
Operations 
cycle rate  

500 ms 100 ms  

Operative 
system  

Windows 7 None   

Sensors  3 ultrasonic Parallax 
PING))) 

3 ultrasonic Parallax 
PING))) 

Sensors sample 
time  

100 ms 100 ms 

Input 
acquisition 
device  

Microcontroller BS2-IC 
@ 20MHz 

9401 digital inputs 
module 

Output 
acquisition 
device 

NI USB 6211 9263 analog outputs 
module 

Maze time 
consumed 

1.19 sec 20 sec 

Number of 
rules  

12 10 

Processor   Intel Core @ 2.4 GHz Spartan-3 Xilinx @ 40 
MHz 

Data Serial  TCP/IP (just for data 

Figure 21. Hardware and software trajectory
tracking comparison for the Strategy-C using, a)
Computer device b) Compact-RIO.

By using strategy-A, the wheelchair crashed four
times as indicated with arrows in Figure 20.a.
and it was very close to the left wall, however
it finished the maze in 1.26 minutes. Strategy-B
did not finish the maze because wheelchair got
stocked in the first corner as can be observed in
Figure 20.b. The third trajectory corresponds to
strategy-C, which was completed in 1.10 minutes
without colliding. Four zones are labelled in
Figure 20.c. as “1”, “2”, “3” and “4” to analyze
them. It seems that in the middle of the curve
(zone 2) there was a collision, but it is only a
perspective effect.

Software and hardware implementations

Figure 21 shows the results trajectories observed
in the hardware and software implementations.
It was compared the Strategy-C implemented
in software and the strategy designed for the
hardware in the maze test.
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DISCUSSION

Static and dynamic controllers
comparative

As presented in Figure 20, the Strategy-C was
the only one that completed the maze without
colliding. The differences between navigation
strategies implemented and the considerations
done about dynamic and static controllers are
remarkable. A comparison between Strategy-
A and Strategy C shows that the last one
results more efficient in time. Further, as
presented in Figure 20.c., in the zone labeled
as “1” there were oscillations caused by the
wheelchair approaching to the left wall and the
controller action trying to correct its trajectory.
In zone “2”, a continuous soft curve to turn
is described contrasting the actions observed in
strategy-A (Figure 20.a.), where it is notorious
that for the same curve the steering actions
are more complicated. In zone “3”, there are
more oscillations caused by the slow response of
the system processing data in software. When
the computer takes a specific action at some
time instant, another obstacles is detected by
sensors. In addition, when the computer sends
data to the motors they react after some
time. This phenomenon is repeated several
times until stabilizes. Finally, in zone “4”
the trajectory stabilizes and only one abrupt
controller correction is noted.

Other differences between the observed
trajectories are caused by the dynamic inputs
considered in the Strategy-C, which are designed
to help the controller in tasks as turning in a
curve. For the static controller implemented
with Strategy-A, it is distinguished a “squared”
turn, but for the same zone the dynamic
controller uses data collected from past actions
to make decisions. This paper does not
show all the possible devices in which the
controller could be deployed, but it analyzed the
performance of the proposed controller in order
to validate it. Normally, micro-controllers are
chipper than FPGAs, so it is a very attractive
possibility to implement this controller using
micro-controllers.

Comparative between real-time and
software versions

The hardware version describes smoother
trajectories and continuous movements, which
are better in contrast with the abrupt movements
obtained with the software implementation. The
uncertainties exhibited in the marked regions of
Figure 21.a. do not occur in Figure 21.b. and
the described curve is smoother. In this test,
the measured time to complete the maze was 20
seconds, which is really fast compared to that
obtained in software Strategies A and C (1.26
and 1.19 seconds, respectively).

Table 5. Comparison table between hardware and software implementations
Characteristic Software Hardware

implementation implementation

Trajectories Rough, abrupt Smooth, clean
Operations cycle rate 500 ms 100 ms
Operative system Windows 7 None

Sensors 3 ultrasonic Parallax PING))) 3 ultrasonic Parallax PING)))
Sensors sample time 100 ms 100 ms

Input acquisition device Microcontroller BS2-IC @ 20MHz 9401 digital inputs module
Output acquisition device NI USB 6211 9263 analog outputs module

Maze time consumed 1.19 sec 20 sec
Number of rules 12 10

Processor Intel Core @ 2.4 GHz Spartan-3 Xilinx @ 40 MHz
Data Communication Serial TCP/IP

to the computer (just for data sharing)
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Those differences between both implementations
are remarkable. It is explained because the
hardware version uses a dedicated processor to
acquire and process data that do not depend on
any operating system. The target processor is
networked to a host PC only for the graphical
interface and data logging. In Table 5 is
presented a comparison.

Sensors

As reviewed in the datasheet, the Tburst is 200 µs
and the maximum echo return pulse is 18.5 ms
for the maximum distance, tholdoff is 740 µs and
tout is 2 µs. Consequently, the fastest time in
the process of measuring data is calculated as:

5µ+ 750µ+ 18.5ms = 19.255ms

This sample time is very slow even for the
software version, and it limits the controller
speed response. The acquisition cycle for the
software and the hardware versions is fixed to
100ms. However, in the software version distance
data is passed from the microcontroller by a
serial communication to the computer and, after
calculating the outputs, the numerical result goes
to the 6211 module. This recurrent process
(indicated in Figure 14.) consumes 500 ms.
Meanwhile in the FPGA version, the analogous
process indicated in Figure 16 consumes 101 ms.
Since sampling time for acquiring distance is 100
ms, then only 1.7 ms are used by the fuzzy
controller. Comparing consumed time in the
hardware and software versions, it is remarkable
that FPGA is superior. Besides, the FPGA
implementation could process data faster but
it is limited by the ultrasonic sensors response
speed.

In order to work properly, the blocking
obstacles must be in front of the sensors sight
line to be detected because they are strictly
directional. However, the use of the dynamic
inputs increase their performance for avoiding
static obstacles.

CONCLUSIONS

Novel dynamic fuzzy logic navigation strategies
were proposed and evaluated using an electric
wheelchair. Although the ultrasonic sensors
provide limited information regarding the
navigation environment, the fuzzy logic
controllers work properly because the dynamic
information (time delay inputs) about the
navigation system was included in the linguistic
rules. The dynamic controllers do not change the
conventional structure of a fuzzy logic controller
but they modified the quality of the information
about the navigation environment by adding
input with delays. The main goal of this
controller is to extend the input information
using time delay signals, hence the controller is
able to find the correct solution using limited
input information.

Initially, a study of the navigation
performance on software of each controller was
presented in order to implement in real time the
best navigation controller. The implementation
based on hardware reaches excellent results and
the electric wheelchair movements are flatter
than movements implemented on software. Since
the FPGA implementation of the dynamic
controller shows reduction in time response, good
avoiding obstacles performance and less sever
movements, this is the best option to implement
a dynamic controller for an electric wheelchair.

One of the main limitations of the controller
are the blind points, caused by the number of
sonar sensors used (only two of them provide
information about the forward navigation).
Adding sensors could expand the information
from the environment of the actual prototype.
Besides, it is a good idea to extract dynamic
inputs from the new sensors. Although the
dynamic controller increases the navigation
performance, the number of fuzzy rules and
membership functions will be more and the
tuning process will be more complex. It is
recommended to use an optimization method,
i.e. genetic algorithms. On the other hand,
the electric wheelchair controller is not robust
to noisy signals, so it is recommended to use an
adaptive filter and sensor signal estimator.
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In order to have more information about the
quantitative performance of the prototype, other
issues could be evaluated. For example: the
consumed time to solve alternatively mazes, the
necessary distances for detection between the
mobile objects and the wheelchair, the response
to materials and composition of different objects
and the behavior of the dynamic navigation
strategy in small space scenarios.
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