
ARTÍCULO DE INVESTIGACIÓN

Vol. 35, No. 2, Agosto 2014, pp. 125-142

Novel Fuzzy Logic Controller based on Time Delay
Inputs for a Conventional Electric Wheelchair

M. Rojas
P. Ponce

A. Molina

Instituto Tecnológico y de
Estudios Superiores de

Monterrey, Campus Ciudad
de México.

ABSTRACT
This work proposes a Dynamic fuzzy logic Controller for the navigation
problem of an electric wheelchair. The controller uses present data
from three ultrasonic sensors as the main source of information from
the environment. However other inputs, named as “dynamic time
delay”, are obtained from past samples of those static data and are
used to design the rule base. Although fuzzy logic controllers with
static inputs could solve basic navigation problems, the proposed
structure with dynamic inputs gets an excellent performance for more
complex navigation problems. There were designed static and dynamic
navigation strategies, which were first deployed in software just to
evaluate their behavior. They were tested in a maze and their
trajectories were compared to select the best. For improving its
response, the dynamic fuzzy logic strategy was deployed in hardware.
The paper presents a comparison between the software and hardware
applications to illustrate the possibility of implementing the proposed
methodology in different platforms. The dynamic fuzzy logic controller
led the electric wheelchair without colliding against walls, and is a high
performance navigation system. Moreover, this controller could solve
the sensor limitations.

Keywords: fuzzy logic, dynamic, controller, wheelchair, ultrasonic
sensors.

126 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

Correspondencia:
Mario Rojas

EGIA, Calle del Puente #222
Col. Ejidos de Huipulco,

Tlalpan C.P. 14380, México
D.F

Correo electrónico:
mario.rojas@itesm.mx

Fecha de recepción:
12 de Octubre de 2013.

Fecha de aceptación:
19 de Junio de 2014

RESUMEN
En este trabajo se presenta un controlador dinámico con lógica difusa
para el problema de navegación de una silla de ruedas. El controlador
usa datos presentes de tres sensores ultrasónicos como la principal fuente
de información del entorno. Sin embargo, a partir de valores pasados
se obtienen otras entradas designadas como “retrasos dinámicos´´
para la base de reglas. A pesar de que los controladores de lógica
difusa con entradas estáticas pueden resolver problemas básicos de
navegación, la estructura propuesta con entradas dinámicas tiene un
excelente desempeño para problemas de navegación más complejos.
Se diseñaron estrategias de navegación estáticas y dinámicas, las
cuales fueron implementadas primero en software para evaluar su
desempeño. Se usó un laberinto y sus trayectorias fueron comparadas
para seleccionar el mejor. Para mejorar su respuesta, la estrategia
dinámica fue implementada en hardware. Este artículo presenta una
comparación entre las aplicaciones de hardware y software para ilustrar
la posibilidad de implementar la metodología en diferentes plataformas.
El controlador dinámico de lógica difusa dirigió la silla eléctrica sin
colisionar contra los muros, y es un sistema de navegación de alto
desempeño. Así mismo, este controlador podría resolver las limitaciones
del sensor.

Palabras clave: lógica difusa, controlador, dinámico, silla de ruedas,
sensores ultrasónicos.

INTRODUCTION

Word report on disability recommends the use of
electric wheelchairs (EW) as assistive technology
for handicapped persons [1]. Furthermore, smart
electric wheelchairs could solve the mobility
problem when the patients suffer strong mobility
limits and cannot control the joystick. They
could be assisted by a smart wheelchair which
includes sensors, controllers, user interfaces and
navigation modules as presented in [2] and [3].

The smart wheelchairs are classified as
autonomous, semi-autonomous and hybrid
systems [4]. In an autonomous wheelchair,
the operator indicates it where to go, then
the system plans the route and moves there
without assistance. In those prototypes, the user
only waits for the system to reach the specified
objective without being able to choose the speed
or the trajectory. Besides, those systems are
limited to local and well-known environments,

and they are planned to be used by patients
who cannot control any device because of their
disability. In the semi-autonomous prototypes,
the operator and the system work together by
means of some user interface, sensors and smart
navigation techniques. With this approach, the
patient partially needs help in certain navigation
tasks but he is able to control the mobility. Tasks
like obstacle avoidance, wall following, parking
and door passage are typically used in this kind
of smart EW as mentioned in [5], [6] and [7].

Conventional controllers are classified in two:
linear and nonlinear. The linear controllers are
constructed from analyzing a set of equations,
which model the dynamic of the system with
precision, or at least approximately. On
the other hand, for nonlinear controllers the
mathematical model contains uncertainties or is
totally unknown because of its complex behavior
(all control systems are actually nonlinear) [8].

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 127

Fuzzification
Rule base

Defuzzification

Inference
engine

Linguistic Logic Strategy

Input
data

Output
data

Fuzzy controller

	

Figure	 1.	 The	 fuzzy	 controller	

There are several works of FLC applied to
autonomous mobile robots, for instance [10], [11] and
[12]. More precisely, a review of {\it fuzzy logic}
applications in electric wheelchairs is presented in
Table	 1. This technique can be used to implement
obstacle avoidance or wall following algorithms for
navigation of the EW in some unknown environments.
For instance, in references [13], [14], [15], [16] and
[17] are presented prototypes which use distance
sensors as inputs for the {\it fuzzy logic} controller.
Another cases of application are those with {\it fuzzy
logic} as part of the user interface to get instructions
from the user (i.e. the flex sensor in [18], the voice
commands in [15] or the joystick operation mode
described in [16]). Finally, other works use {\it fuzzy
logic} for complementary tasks of the complete
system as pairing location patterns in a map or
controlling the speed of the wheelchair motors ([19]
and [20], respectively).

According to the review presented in Table 1, the
wheelchair performance is related with three main
aspects: the sensors employed, the processing core and
the implemented methodology. For the case of sensors,
they are used to get distance measurements from
obstacles. Ultrasonic sensors have been widely used in
prototypes because of their low cost and fast responses,
however they have some noise problems, which can be
improved with software. Another alternative is the
infrared sensors (IR), but they are limited in distance
and visible light affects their performance as presented
in [15]. Other systems use laser range finders, but they
are not as cheap as ultrasonic sensors [5]. It is certainly
true that a big number of sensors comprises more
environment information for the controller, but this
outcomes in a more complex control [16]. In those
cases, if the processor is limited in resources the
response will be slow.

The other aspect to consider is the processing core. In
Table 1, all projects were implemented using
microcontrollers or computers, and just one of them
used real-time hardware to control the motors rotation

speed [21]. In contrast, there are parallel architectures
which allow data to access the resources at the same
moment, and they guarantee the execution in a time
period. The real-time hardware, like Field Gate
Programmable Array (FPGA) has proved to be very
efficient and reliable, and there are a lot of
advantages about configuring a controller in the
FPGA instead of using a computer or any
microcontroller [22].

Table	 1.	 Main	 works	 developed	 using	 {\it	 fuzzy	 logic}	 for	 an	
Electric	 Wheelchair	 (EW)	

Ref. Description

[13] Two fuzzy controllers are used: one for joining a
target specified by specifying an (x, y) coordinate
and the other for avoiding obstacles.

[14]

The fuzzy controller considers distance, presence
and direction from the objects to decide if it
necessary to change the trajectory.

[18] It uses two fuzzy controllers, one to determine
actions from the flex sensors and the other for
obstacle avoidance based in ultrasonic sensors.
Preference is given to the fingertip control if
obstacles are far and to the obstacle avoidance
system if objects are close.

[15]

It includes an obstacle avoidance control which
uses IR sensors, as well as a contour following
control. Both are {\it fuzzy logic} controllers.

[20]

Utilizes FPGA technology in a wheelchair
combined with a {\it fuzzy logic} control
designed to manipulate the rotation speed of the
driving motors. It is not a navigation control.

[16] The fuzzy controller is based in the information
given by eight sonar sensors and the joystick.
Inference system is based in that information to
control direction and speed of the wheelchair.

[19]

The fuzzy control is focused on matching the
position of a wheelchair in a sidewalk network
map of an urban area, by using a GPS.

[17]

The {\it fuzzy logic} controller is designed to
alternate between manual and automatic
navigation depending of near obstacles. This
assures the switching to be gradual. The automatic
controller is also based in {\it fuzzy logic} to
avoid obstacles.

[23]

The controller is used to determine the operator
orders by using a seat pressure sensor and body
movements as the interface. The inputs for the
inference system are the x and y velocity and
acceleration of human gravity center. The
prototype includes omnidirectional wheels for
moving in every direction.

Finally, in relation with the implemented algorithm to
avoid obstacles, the Mamdami methodology is used
in [14], [18], [15], [16], [17] and [23]. Mamdani is a

Figure 1. The fuzzy controller.

The fuzzy logic, introduced by Zadeh in [9],
is used as a control technique for systems in
which no mathematical model is known. It
is complicated to find a mathematical model
when the user takes navigation decisions based
on vague and imprecise information, but it
is possible to approximate their actions with
a controller based in fuzzy logic. The basic
topology of a Fuzzy Logic Controller (FCL) is
shown in Figure 1. The inputs are crisp values,
which are changed into degrees of membership
between 0 and 1. The membership functions
are described with linguistic labels (like Close
or Far), which are very useful for constructing
the rule base built with if-then structures. The
input fuzzy sets are used as antecedents and
the output fuzzy sets as consequents, both are
connected with a fuzzy operator to determine
the rule membership value. This value is used
in the defuzzification process to determine the
crisp output.

There are several works of FLC applied to
autonomous mobile robots, for instance [10],
[11] and [12]. More precisely, a review of
fuzzy logic applications in electric wheelchairs is
presented in Table 1. This technique can be
used to implement obstacle avoidance or wall
following algorithms for navigation of the EW
in some unknown environments. For instance,
in references [13], [14], [15], [16] and [17] are
presented prototypes which use distance sensors
as inputs for the fuzzy logic controller. Another
cases of application are those with fuzzy logic as
part of the user interface to get instructions from
the user (i.e. the flex sensor in [18], the voice
commands in [15] or the joystick operation mode
described in [16]). Finally, other works use fuzzy
logic for complementary tasks of the complete
system as pairing location patterns in a map or

controlling the speed of the wheelchair motors
([19] and [20], respectively).

According to the review presented in Table
1, the wheelchair performance is related with
three main aspects: the sensors employed,
the processing core and the implemented
methodology. For the case of sensors, they
are used to get distance measurements from
obstacles. Ultrasonic sensors have been widely
used in prototypes because of their low cost and
fast responses, however they have some noise
problems, which can be improved with software.
Another alternative is the infrared sensors (IR),
but they are limited in distance and visible light
affects their performance as presented in [15].
Other systems use laser range finders, but they
are not as cheap as ultrasonic sensors [5]. It
is certainly true that a big number of sensors
comprises more environment information for the
controller, but this outcomes in a more complex
control [16]. In those cases, if the processor is
limited in resources the response will be slow.

The other aspect to consider is the processing
core. In Table 1, all projects were implemented
using microcontrollers or computers, and just
one of them used real-time hardware to control
the motors rotation speed [21]. In contrast,
there are parallel architectures which allow data
to access the resources at the same moment,
and they guarantee the execution in a time
period. The real-time hardware, like Field Gate
Programmable Array (FPGA) has proved to be
very efficient and reliable, and there are a lot
of advantages about configuring a controller in
the FPGA instead of using a computer or any
microcontroller [22].

Finally, in relation with the implemented
algorithm to avoid obstacles, the Mamdami
methodology is used in [14], [18], [15], [16], [17]
and [23]. Mamdani is a predominant inference
technique for fuzzy logic controllers based on
human experience. In all those prototypes, static
inputs are used to compute the output of the
controller (static inputs mean current time data),
however more information can be obtained from
the past samples. That information is known
as dynamic, and can be used as extra inputs
for the controller to improve the whole system
performance.

128 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

Table 1. Main works developed using fuzzy logic for an Electric Wheelchair (EW)
Ref. Description

[13] Two fuzzy controllers are used: one for joining a target specified by specifying an (x, y)
coordinate and the other for avoiding obstacles.

[14] The fuzzy controller considers distance, presence and direction from the objects to decide if
it necessary to change the trajectory.

[18] It uses two fuzzy controllers, one to determine actions from the flex sensors and the other for
obstacle avoidance based in ultrasonic sensors. Preference is given to the fingertip control if
obstacles are far and to the obstacle avoidance system if objects are close.

[15] It includes an obstacle avoidance control which uses IR sensors, as well as a contour following
control. Both are fuzzy logic controllers.

[20] Utilizes FPGA technology in a wheelchair combined with a fuzzy logic control designed to
manipulate the rotation speed of the driving motors. It is not a navigation control.

[16] The fuzzy controller is based in the information given by eight sonar sensors and the joystick.
Inference system is based in that information to control direction and speed of the wheelchair.

[19] The fuzzy control is focused on matching the position of a wheelchair in a sidewalk network
map of an urban area, by using a GPS.

[17] The fuzzy logic controller is designed to alternate between manual and automatic navigation
depending of near obstacles. This assures the switching to be gradual. The automatic
controller is also based in fuzzy logic to avoid obstacles.

[23] The controller is used to determine the operator orders by using a seat pressure sensor and
body movements as the interface. The inputs for the inference system are the x and y velocity
and acceleration of human gravity center. The prototype includes omnidirectional wheels for
moving in every direction.

This work proposes a dynamic fuzzy logic
controller for an EW navigation system, which
utilizes only three ultrasonic sensors. Extra
information is computed from the distance
measurements as additional inputs for the
controller in order to get better results.
Implementation was done first in software
running in Windows 7, and then in the FPGA
chip embedded in a cRIO 9014 to guarantee data
processing in real time.

METHODOLOGY

The electric wheelchair structural design

The system described in this section is named as
“The software implementation”. A commercial
electric wheelchair by Quickie, model P222-SE,
was adapted with the hardware shown in Figure
2. The NI USB-6211 is a data acquisition module
used to generate the voltages that move the EW
motors. Two analog channels are used: one
for forward-backward movement and another for

steering left-right actions.
In addition, three Parallax PING)))

ultrasonic sensors were installed in the
wheelchair at different positions: front left
(S1), front right (S2) and back (S3). The
general information regarding the ultrasonic
sensors is presented below (more information
in [24]). They detect objects by emitting a
short ultrasonic burst and then “listening” the
echo. The sensors normally emits a short
40 kHz burst under the operation of a host
digital system (trigger pulse), for example a
microcontroller. This burst travels through the
air, hits an object and then bounces back to the
sensor. The PING))) sensor provides an output
pulse to the host that will terminate when the
echo is detected, hence the width of this pulse
corresponds to the distance to the target. The
principle of operation of these sensors is shown
in Figure 3.

The microcontroller block is a Basic Stamp
2 (BS2-IC), a 20 MHz speed processor made
by Parallax. This microcontroller acquires data

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 129

predominant inference technique for {\it fuzzy logic}
controllers based on human experience. In all those
prototypes, static inputs are used to compute the output
of the controller (static inputs mean current time data),
however more information can be obtained from the
past samples. That information is known as dynamic,
and can be used as extra inputs for the controller to
improve the whole system performance. This work
proposes a dynamic {\it fuzzy logic} controller for an
EW navigation system, which utilizes only three
ultrasonic sensors. Extra information is computed from
the distance measurements as additional inputs for the
controller in order to get better results. Implementation
was done first in software running in Windows 7, and
then in the FPGA chip embedded in a cRIO 9014 to
guarantee data processing in real time.

METHODOLOGY

The electric wheelchair structural design

The system described in this section is named as “The
software implementation”. A commercial electric
wheelchair by Quickie, model P222-SE, was adapted
with the hardware shown in Figure	 2. The NI USB-
6211 is a data acquisition module used to generate the
voltages that move the EW motors. Two analog
channels are used: one for forward-backward
movement and another for steering left-right actions.

Computer
Microcontroller

A01
AO2

Serial
 port

Joystick

User Interface

NI-DAQ
USB 6211

Wheelchair
Quickie P222-SE

Motors

PING)))
Sensors

Figure	 2.	 Components	 of	 the	 wheelchair	 system	 implemented	 in	

LabVIEW	 	 	

In addition, three Parallax PING))) ultrasonic sensors
were installed in the wheelchair at different positions:
front left (S1), front right (S2) and back (S3). The
general information regarding the ultrasonic sensors is
presented below (more information in [24]). They
detect objects by emitting a short ultrasonic burst and
then "listening" the echo. The sensors normally emits
a short 40 kHz burst under the operation of a host
digital system (trigger pulse), for example a
microcontroller. This burst travels through the air, hits

an object and then bounces back to the sensor. The
PING))) sensor provides an output pulse to the host
that will terminate when the echo is detected, hence
the width of this pulse corresponds to the distance to
the target. The principle of operation of these sensors
is shown in Figure 3.

Figure	 3.	 Parallax	 PING)))	 ultrasonic	 sensors	 principle	 of	

operation	 described	 in	 their	 manual	 [33]	

The microcontroller block is a Basic Stamp 2 (BS2-
IC), a 20 MHz speed processor made by Parallax.
This microcontroller acquires data from the
ultrasonic sensors, converts it into distance
measurements and sends that information via serial
communication to the interface hosted in a laptop.
The microcontroller is configured to receive distance
samples every 100 ms from the sensors. Finally, the
interface to operate the electric wheelchair was
programed in LabVIEW 2013. It receives distance
data from the BS2-IC and sends voltage operation
values to the acquisition module 6211. This interface
allows the user to move the wheelchair with virtual
controls and to observe the measured distances to
objects (in centimeters). Furthermore, the {\it fuzzy
logic} controller (FLC) was integrated to execute
automatic actions based in those measurements.

Navigation scenarios analysis

The wheelchair must move in any environment with
static objects like walls, doors, hallways; and
dynamic objects, which suddenly appear like a person
walking. When an object is detected in the path, the
controller computes which movement or steer action
is going to be performed. It is desirable that in every
configuration, the system should go forward in a
straight route avoiding obstacles. In Figure 4 are
presented four configurations to analyze how the
system behaves, which inputs are considered and
what actions are needed to do in every case. With this
analyses is determined the rule base for the fuzzy

Figure 2. Components of the wheelchair system
implemented in LabVIEW

predominant inference technique for {\it fuzzy logic}
controllers based on human experience. In all those
prototypes, static inputs are used to compute the output
of the controller (static inputs mean current time data),
however more information can be obtained from the
past samples. That information is known as dynamic,
and can be used as extra inputs for the controller to
improve the whole system performance. This work
proposes a dynamic {\it fuzzy logic} controller for an
EW navigation system, which utilizes only three
ultrasonic sensors. Extra information is computed from
the distance measurements as additional inputs for the
controller in order to get better results. Implementation
was done first in software running in Windows 7, and
then in the FPGA chip embedded in a cRIO 9014 to
guarantee data processing in real time.

METHODOLOGY

The electric wheelchair structural design

The system described in this section is named as “The
software implementation”. A commercial electric
wheelchair by Quickie, model P222-SE, was adapted
with the hardware shown in Figure	 2. The NI USB-
6211 is a data acquisition module used to generate the
voltages that move the EW motors. Two analog
channels are used: one for forward-backward
movement and another for steering left-right actions.

Computer
Microcontroller

A01
AO2

Serial
 port

Joystick

User Interface

NI-DAQ
USB 6211

Wheelchair
Quickie P222-SE

Motors

PING)))
Sensors

Figure	 2.	 Components	 of	 the	 wheelchair	 system	 implemented	 in	

LabVIEW	 	 	

In addition, three Parallax PING))) ultrasonic sensors
were installed in the wheelchair at different positions:
front left (S1), front right (S2) and back (S3). The
general information regarding the ultrasonic sensors is
presented below (more information in [24]). They
detect objects by emitting a short ultrasonic burst and
then "listening" the echo. The sensors normally emits
a short 40 kHz burst under the operation of a host
digital system (trigger pulse), for example a
microcontroller. This burst travels through the air, hits

an object and then bounces back to the sensor. The
PING))) sensor provides an output pulse to the host
that will terminate when the echo is detected, hence
the width of this pulse corresponds to the distance to
the target. The principle of operation of these sensors
is shown in Figure 3.

Figure	 3.	 Parallax	 PING)))	 ultrasonic	 sensors	 principle	 of	

operation	 described	 in	 their	 manual	 [33]	

The microcontroller block is a Basic Stamp 2 (BS2-
IC), a 20 MHz speed processor made by Parallax.
This microcontroller acquires data from the
ultrasonic sensors, converts it into distance
measurements and sends that information via serial
communication to the interface hosted in a laptop.
The microcontroller is configured to receive distance
samples every 100 ms from the sensors. Finally, the
interface to operate the electric wheelchair was
programed in LabVIEW 2013. It receives distance
data from the BS2-IC and sends voltage operation
values to the acquisition module 6211. This interface
allows the user to move the wheelchair with virtual
controls and to observe the measured distances to
objects (in centimeters). Furthermore, the {\it fuzzy
logic} controller (FLC) was integrated to execute
automatic actions based in those measurements.

Navigation scenarios analysis

The wheelchair must move in any environment with
static objects like walls, doors, hallways; and
dynamic objects, which suddenly appear like a person
walking. When an object is detected in the path, the
controller computes which movement or steer action
is going to be performed. It is desirable that in every
configuration, the system should go forward in a
straight route avoiding obstacles. In Figure 4 are
presented four configurations to analyze how the
system behaves, which inputs are considered and
what actions are needed to do in every case. With this
analyses is determined the rule base for the fuzzy

Figure 3. Figure 3. Parallax PING))) ultrasonic
sensors principle of operation described in their
manual [33].

from the ultrasonic sensors, converts it
into distance measurements and sends that
information via serial communication to the
interface hosted in a laptop. The microcontroller
is configured to receive distance samples every
100 ms from the sensors. Finally, the interface to
operate the electric wheelchair was programed
in LabVIEW 2013. It receives distance data
from the BS2-IC and sends voltage operation
values to the acquisition module 6211. This
interface allows the user to move the wheelchair
with virtual controls and to observe the
measured distances to objects (in centimeters).
Furthermore, the fuzzy logic controller (FLC)
was integrated to execute automatic actions
based in those measurements.

Navigation scenarios analysis

The wheelchair must move in any environment
with static objects like walls, doors, hallways;
and dynamic objects, which suddenly appear
like a person walking. When an object is
detected in the path, the controller computes
which movement or steer action is going to

controller.

S1 S2

S3

S1 S2

S3

S2S1 S2S1

S2

a) b)

c) d) 	
Figure	 4.	 Navigation	 scenarios	 a)	 static	 obstacles,	 b)	 dynamic	
obstacles,	 c)	 turning	 corners,	 d)	 Straight	 navigation.

The configuration indicated in Figure 4.a. shows
the sensors S1, S2 and S3 blocked by objects at a
distance considered “close”. Consequently, the action
is to steer left or right to avoid the blocking object. The
second scenario presented in Figure 4.b. shows
dynamic and static obstacles moving either around the
sensors S1 or S2. When an object appears suddenly,
the EW must avoid crashing with it. The third
configuration presented in Figure 4.c. shows if there is
a steering action that must be carried out for a long
time to turn over a corner (the blocked sensor stills in
that same state until the corner is over). Finally, the last
navigation case is a straightforward trajectory observed
in Figure 4.d. It is desirable that the wheelchair moves
in the middle of a hallway, and maintain same distance
between left and right walls.

{\it fuzzy logic} navigation strategies

Three {\it fuzzy logic} controllers were designed after
the analysis of the configurations. Figure	 5 shows the
strategies proposed for navigation.
{\it Strategy-A}. It uses as inputs the distance
measurements from left, right and back sensors. The
idea is simple, when a sensor is blocked the controller
calculates a direction to steer. Observe that these inputs
are static because they are the current data taken from
sensor.
{\it Strategy-B}. It uses the same logic as in Strategy-A,
but additionally it considers past samples from sensors
S1 and S2 as inputs to detect dynamic objects. The
inputs labeled as dS1/dt and dS2/dt are defined as

delayed data, thus s1 is the current distance and
dS1/dt is the last past value obtained. In addition, this
strategy uses as an input the arithmetic mean of 16
samples collected from steering past actions (D
output) performed by the controller.

Strategy-A
Fuzzy Logic
Controller D

MS1

S3
S2

Strategy-B
Fuzzy Logic
Controller

D

M

S1

S3
S2

dS2
dt

dS1
dt

Y

dS1

dS2

Strategy-C
Fuzzy Logic
Controller

D

M

S1

S3
S2

dS2
dt

S2-S1

dS1
dt

S

dS1

dS2

Y

	
Figure	 5.	 Fuzzy	 controller	 structures	 designed	 for	 approaches	 A,	
B	 and	 C	

{\it Strategy-C}. This controller is based in the
previous strategies, but it includes another input to
make straighter trajectories. This input is obtained by
subtracting S2 from S1. If this input is included, the
EW tries to stay at the center of the path. 12 rules
were proposed for this strategy, the next cases are
described next:

• Rule 1, 2, 3. Left, right and back sensors are

completely blocked.
• Rules 4, 5. Chair is blocked in one side, left

or right.
• Rules 6, 7, 8. Chair is blocked in both sides

simultaneously
• Rules 9, 10, 11. All sensors are in the “far”

set.
• Rule 12. An object appears suddenly.

Figure 4. Navigation scenarios a) static
obstacles, b) dynamic obstacles, c) turning
corners, d) Straight navigation.

be performed. It is desirable that in every
configuration, the system should go forward in
a straight route avoiding obstacles. In Figure 4
are presented four configurations to analyze how
the system behaves, which inputs are considered
and what actions are needed to do in every case.
With this analyses is determined the rule base
for the fuzzy controller.

The configuration indicated in Figure 4.a.
shows the sensors S1, S2 and S3 blocked
by objects at a distance considered “close”.
Consequently, the action is to steer left or right
to avoid the blocking object. The second scenario
presented in Figure 4.b. shows dynamic and
static obstacles moving either around the sensors
S1 or S2. When an object appears suddenly,
the EW must avoid crashing with it. The third
configuration presented in Figure 4.c. shows if
there is a steering action that must be carried
out for a long time to turn over a corner (the
blocked sensor stills in that same state until the
corner is over). Finally, the last navigation case
is a straightforward trajectory observed in Figure
4.d. It is desirable that the wheelchair moves
in the middle of a hallway, and maintain same
distance between left and right walls.

130 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

Fuzzy logic navigation strategies

Three fuzzy logic controllers were designed after
the analysis of the configurations. Figure 5 shows
the strategies proposed for navigation.
Strategy-A. It uses as inputs the distance
measurements from left, right and back sensors.
The idea is simple, when a sensor is blocked the
controller calculates a direction to steer. Observe
that these inputs are static because they are the
current data taken from sensor.
Strategy-B. It uses the same logic as in Strategy-
A, but additionally it considers past samples
from sensors S1 and S2 as inputs to detect
dynamic objects. The inputs labeled as dS1/dt
and dS2/dt are defined as delayed data, thus s1 is
the current distance and dS1/dt is the last past
value obtained. In addition, this strategy uses
as an input the arithmetic mean of 16 samples
collected from steering past actions (D output)
performed by the controller.
Strategy-C. This controller is based in the
previous strategies, but it includes another input
to make straighter trajectories. This input is
obtained by subtracting S2 from S1. If this input
is included, the EW tries to stay at the center
of the path. 12 rules were proposed for this
strategy, the next cases are described next:

• Rule 1, 2, 3. Left, right and back sensors
are completely blocked.

• Rules 4, 5. Chair is blocked in one side, left
or right.

• Rules 6, 7, 8. Chair is blocked in both sides
simultaneously

• Rules 9, 10, 11. All sensors are in the “far”
set.

• Rule 12. An object appears suddenly.

The complete rule set is shown in Table 2.
Variables are defined in terms of fuzzy sets

termed as:

S1, S2, S3 → C (Close), F (Far)

ds1, ds2 → GF (Getting far)

S → P (Positive), Z (Zero), N (Negative)

controller.

S1 S2

S3

S1 S2

S3

S2S1 S2S1

S2

a) b)

c) d) 	
Figure	 4.	 Navigation	 scenarios	 a)	 static	 obstacles,	 b)	 dynamic	
obstacles,	 c)	 turning	 corners,	 d)	 Straight	 navigation.

The configuration indicated in Figure 4.a. shows
the sensors S1, S2 and S3 blocked by objects at a
distance considered “close”. Consequently, the action
is to steer left or right to avoid the blocking object. The
second scenario presented in Figure 4.b. shows
dynamic and static obstacles moving either around the
sensors S1 or S2. When an object appears suddenly,
the EW must avoid crashing with it. The third
configuration presented in Figure 4.c. shows if there is
a steering action that must be carried out for a long
time to turn over a corner (the blocked sensor stills in
that same state until the corner is over). Finally, the last
navigation case is a straightforward trajectory observed
in Figure 4.d. It is desirable that the wheelchair moves
in the middle of a hallway, and maintain same distance
between left and right walls.

{\it fuzzy logic} navigation strategies

Three {\it fuzzy logic} controllers were designed after
the analysis of the configurations. Figure	 5 shows the
strategies proposed for navigation.
{\it Strategy-A}. It uses as inputs the distance
measurements from left, right and back sensors. The
idea is simple, when a sensor is blocked the controller
calculates a direction to steer. Observe that these inputs
are static because they are the current data taken from
sensor.
{\it Strategy-B}. It uses the same logic as in Strategy-A,
but additionally it considers past samples from sensors
S1 and S2 as inputs to detect dynamic objects. The
inputs labeled as dS1/dt and dS2/dt are defined as

delayed data, thus s1 is the current distance and
dS1/dt is the last past value obtained. In addition, this
strategy uses as an input the arithmetic mean of 16
samples collected from steering past actions (D
output) performed by the controller.

Strategy-A
Fuzzy Logic
Controller D

MS1

S3
S2

Strategy-B
Fuzzy Logic
Controller

D

M

S1

S3
S2

dS2
dt

dS1
dt

Y

dS1

dS2

Strategy-C
Fuzzy Logic
Controller

D

M

S1

S3
S2

dS2
dt

S2-S1

dS1
dt

S

dS1

dS2

Y

	
Figure	 5.	 Fuzzy	 controller	 structures	 designed	 for	 approaches	 A,	
B	 and	 C	

{\it Strategy-C}. This controller is based in the
previous strategies, but it includes another input to
make straighter trajectories. This input is obtained by
subtracting S2 from S1. If this input is included, the
EW tries to stay at the center of the path. 12 rules
were proposed for this strategy, the next cases are
described next:

• Rule 1, 2, 3. Left, right and back sensors are

completely blocked.
• Rules 4, 5. Chair is blocked in one side, left

or right.
• Rules 6, 7, 8. Chair is blocked in both sides

simultaneously
• Rules 9, 10, 11. All sensors are in the “far”

set.
• Rule 12. An object appears suddenly.

Figure 5. Fuzzy controller structures designed
for approaches A, B and C

M → N (Negative), MF (Medium Fast), B
(Backward), F (Forward), MF (Middle
Forward)

D → L (Left), ML (Medium Left), N
(Negative), MR (Medium Right), R
(Right)

Y → TR (Turning Right), TN (Turning Null),
TL (Turning Left)

Input variables description

The fuzzy sets used for every variable are
described next:

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 131

Table 2. The software implementation rule set (Strategy-C)
1 s : N ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
2 s : Z ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
3 s : P ∩ s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
4 s : N ∩ s1 : F ∩ s2 : C ⇒M : MF ∩D : L
5 s : P ∩ s1 : C ∩ s2 : F ⇒M : MF ∩D : R
6 s : N ∩ s1 : C ∩ s2 : C ∩ Y : TR⇒M : B ∩D : R
7 s : Z ∩ s1 : C ∩ s2 : C ∩ Y : TN ⇒M : B ∩D : N
8 s : P ∩ s1 : C ∩ s2 : C ∩ Y : TL⇒M : B ∩D : L
9 s : N ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : ML
10 s : Z ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : N
11 s : P ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : MR
12 ds1 : GF ∪ ds2 : GF ⇒M : MF ∩D : N
Where ∩ = Tm = min(x, y).

The complete rule set is shown in Table 2.

Table	 2.	 The	 software	 implementation	 rule	 set	 (Strategy-‐C)	

1 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁
2 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁
3 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁
4 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷: 𝐿
5 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑅
6 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝑅 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑅
7 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝑁 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑁
8 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑌:𝑇𝐿 ⇒ 𝑀:𝐵 ⊓ 𝐷: 𝐿
9 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝐿
10 𝑠:𝑍 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑁
11 𝑠:𝑃 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝑅
12 𝑑𝑠!:𝐺𝐹 ⊔ 𝑑𝑠!:𝐺𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑁

Where ⊓= T! = min x, y .

Variables are defined in terms of fuzzy sets termed as:

S1, S2, S3 → C (Close), F (Far)
ds1, ds2 → GF (Getting far)
S → P (Positive), Z (Zero), N (Negative)
M → N (Negative), MF (Medium Fast), B (Backward),
F (Forward), MF (Middle Forward)
D → L (Left), ML (Medium Left), N (Negative), MR
(Medium Right), R (Right)
Y → TR (Turning Right), TN (Turning Null), TL
(Turning Left)

Inputs variables description

The fuzzy sets used for every variable are described
next:

{\it Distance}. This variable is defined with two fuzzy
sets: close (“C”) and far (“F”) and is specified for S1,
S2 and S3 sensors. The distance range of these inputs
was considered as much as necessary to avoid
collisions as shown in Figure	 6.a.
{\it Distance differential}. These inputs were calculated
from S1 and S2. The “dS1” and “dS2” inputs are
defined by two fuzzy sets: getting fast (“GF”) and
getting slow (“GS”). They are useful for the system to
take decisions by considering the approaching of
dynamic objects to the wheelchair. Membership
functions of these inputs are presented in Figure	 6.b.

0
20 30 40 5010

0.25

0.5
0.75
1.0

0

C	 –	 Close
F	 –	 Far

F

S1/S2/S3	 [cm]

µ(S1/S2/S3)

0
40 60 80 10020

0.25

0.5
0.75

1.0

0

GS GF

dS1/dS2	 [cm]

µ(dS1/dS2)

TNTL TR

a) b)

GS	 –	 Getting	 Small
GF	 –	 Getting	 Fast

N	 –	 Negative
Z	 –	 Zero
P	 –	 Positive

TL	 –	 Turning	 Left
TN	 –	 Turning	 Null
TR	 –	 Turning	 Right

C

0
5.7 5.8 5.9 6.55.5

0.25

0.5
0.75
1.0

5.2 Y[V]

µ(Y)

0
0 400

0.25

0.5
0.75

1.0

-‐400

N Z

S	 [cm]

µ(S)

c) d)

P

Figure	 6.	 Fuzzy	 Input	 definitions	 and	 memberships	 functions	 a)	
distance,	 b)	 distance	 differential,	 c)	 past	 steering	 action	 and	 d)	

sensor	 difference.	

{\it Past steering action}. It is defined from the
collected information about the past steering values
that indicate an action performed for a long time.
This input named “Y” is obtained from the “D”
output and is defined with 3 membership functions as
shown in Figure	 6.c: turning left, turning null and
turning right (“TL”, “TN” and “TR”, respectively).

{\it Sensor difference}. It is obtained by subtracting
S1 from S2 and determines if the wheelchair is
deviating negatively, positively or zero (“N”, “P”,
and “Z”). If the difference is negative, the wheelchair
steers to the left side; if positive, steers to the right
side of the reference. Membership functions are
shown in Figure	 6.d.

Output variables description

Output variables indicate the movement or steering
action of the wheelchair: forward, backward, left or
right. The obtained values are defuzzified into analog
voltages. Figure	 7 shows the sets definition for these
outputs. Their ranges are adjusted to the functional
voltages for moving the motors and they are not
symmetrical.
{\it Movement}. The “M” output corresponds to
analog voltage channel 1, and it is defined by five
fuzzy sets named Backward, Middle Backward, Null,
Middle Forward and Forward (“B”, “MB”, “N”,
“MF”, “F”). These five membership functions allow
the system to go backward or forward in different
speeds.
{\it Direction}. This output (labelled as “D”) activates
analog channel 2 and is defined by five sets named
Left, Middle Left, Null, Middle Right, Right
(“L”,“ML”,“N”, “MR”, “R”).

Figure 6. Fuzzy Input definitions and memberships functions a) distance, b) distance differential, c)
past steering action and d) sensor difference.

Distance. This variable is defined with two
fuzzy sets: close (“C”) and far (“F”) and
is specified for S1, S2 and S3 sensors.
The distance range of these inputs was
considered as much as necessary to avoid
collisions as shown in Figure 6.a.

Distance differential. These inputs were
calculated from S1 and S2. The “dS1”

and “dS2” inputs are defined by two fuzzy
sets: getting fast (“GF”) and getting
slow (“GS”). They are useful for the
system to take decisions by considering
the approaching of dynamic objects to the
wheelchair. Membership functions of these
inputs are presented in Figure 6.b.

132 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

0

MB

5.65.2

0.25
0.5
0.75
1.0

4.2

B N

M	 [V]

µ(M)

6.24.3

a)

MF F

6.0

B	 -‐	 Backward
MB	 –	 Middle	 Backward
N	 –	 Null
MF	 –	 Middle	 Forward
F	 -‐	 Forward

L	 -‐	 Left
ML	 –	 Middle	 Left
N	 –	 Null
MR	 –	 Middle	 Right
R	 -‐	 Right

0

ML

6.05.5

0.25
0.5
0.75
1.0

4

L N

D	 [V]

µ(D)

6.84.5

b)

NR R

6.5

	
Figure	 7.	 Fuzzy	 outputs	 definition	 a)	 Movement,	 b)	 Direction	
outputs

Static and dynamic fuzzy controllers

Navigation circumstances presented above could be
used to define static and dynamic {\it fuzzy logic}
controllers. A static FLC operates with the current
sensor data to obtain the outputs (Strategy-A), but a
dynamic FLC considers current and past values from
sensors to obtain the outputs (Strategies B and C). A
study of a static controller behavior is presented below
in order to see how the information from the past is not
affecting the firing rules. It was used the proposed
Strategy-C in this analysis.

The study case has the following conditions:
there are objects blocking the sensors S1 and S2,
approaching at different speeds from a distance
considered far. This is illustrated in Figure	 8.

If the controller has a set of fixed linguistic rules
(as those in Table	 2) and it is assumed that the rules
(10, 9, 7 and 4) are affected for specific inputs. The
firing strength graphs obtained in this case study are
shown in Figure	 9.
The firing strength shows how the rules change
according to the movement of the EW. The Speed
response is presented in Figure	 10.a. which shows
actions executed. In the first configuration, distance
registered in sensors S1 and S2 decrease at the same
rate. In the velocity graph as the distance becomes
small, forward speed is needed to slow down to avoid
collision up to the moment it changes direction to
backward. Meanwhile, in the angular velocity response
no change in direction is registered. However, for the
second response presented in Figure	 10.b.
corresponding to the other configuration, forward
speed decreases slowly until it changes to backward
when both sensors are completely blocked. Because S2
arrives first at the close region, a left angular velocity
is registered.

object

S1 S2

S3

96 cm74 cm

4 cm

object

7 cm

object

S1 S2

S3

95 cm84 cm

3 cm

object

6 cm

	
Figure	 8.	 Case	 Study	 regarding	 the	 configuration	 when	 both	
sensors	 change	 values	 (a)	 at	 same	 speed	 and	 (b)	 S1	 changes	
faster	 than	 S2

a)

b)

Figure	 9.	 Firing	 strength	 graphs	 for	 conditions	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 the	 different	
speed

	

	

	

	

	

	

0

50

100

020406080100
0

0.2

0.4

0.6

0.8

1

S1 [cm]

rule 7

rule 4

rule 9

S2 [cm]

rule 10

Fi
rin

g
St

re
ng

th

0

50

100

0

50

100
0

0.2

0.4

0.6

0.8

1

rule 11

rule 10

S1 [cm]

rule 4

rule 9

S2 [cm]

Fi
rin

g
St

re
ng

th

Figure 7. Fuzzy outputs definition a) Movement, b) Direction outputs

Past steering action. It is defined from
the collected information about the past
steering values that indicate an action
performed for a long time. This input
named “Y” is obtained from the “D”
output and is defined with 3 membership
functions as shown in Figure 6.c: turning
left, turning null and turning right (“TL”,
“TN” and “TR”, respectively).

Sensor difference. It is obtained by
subtracting S1 from S2 and determines
if the wheelchair is deviating negatively,
positively or zero (“N”, “P”, and “Z”). If
the difference is negative, the wheelchair
steers to the left side; if positive, steers to
the right side of the reference. Membership
functions are shown in Figure 6.d.

Output variables description

Output variables indicate the movement or
steering action of the wheelchair: forward,
backward, left or right. The obtained values
are defuzzified into analog voltages. Figure 7
shows the sets definition for these outputs. Their
ranges are adjusted to the functional voltages for
moving the motors and they are not symmetrical.

Movement. The “M” output corresponds
to analog voltage channel 1, and it is
defined by five fuzzy sets named Backward,
Middle Backward, Null, Middle Forward
and Forward (“B”, “MB”, “N”, “MF”,
“F”). These five membership functions
allow the system to go backward or forward
in different speeds.

Direction. This output (labelled as “D”)
activates analog channel 2 and is defined

by five sets named Left, Middle Left, Null,
Middle Right, Right (“L”, “ML”, “N”,
“MR”, “R”).

Static and dynamic fuzzy controllers

Navigation circumstances presented above could
be used to define static and dynamic fuzzy
logic controllers. A static FLC operates with
the current sensor data to obtain the outputs
(Strategy-A), but a dynamic FLC considers
current and past values from sensors to obtain
the outputs (Strategies B and C). A study of a
static controller behavior is presented below in
order to see how the information from the past
is not affecting the firing rules. It was used the
proposed Strategy-C in this analysis.

The study case has the following conditions:
there are objects blocking the sensors S1 and S2,
approaching at different speeds from a distance
considered far. This is illustrated in Figure 8.

If the controller has a set of fixed linguistic
rules (as those in Table 2) and it is assumed that
the rules (10, 9, 7 and 4) are affected for specific
inputs. The firing strength graphs obtained in
this case study are shown in Figure 9.

The firing strength shows how the rules
change according to the movement of the EW.
The Speed response is presented in Figure 10.a.
which shows actions executed. In the first
configuration, distance registered in sensors S1
and S2 decrease at the same rate. In the velocity
graph as the distance becomes small, forward
speed is needed to slow down to avoid collision up
to the moment it changes direction to backward.
Meanwhile, in the angular velocity response no
change in direction is registered. However,
for the second response presented in Figure

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 133

0

MB

5.65.2

0.25
0.5
0.75
1.0

4.2

B N

M	 [V]

µ(M)

6.24.3

a)

MF F

6.0

B	 -‐	 Backward
MB	 –	 Middle	 Backward
N	 –	 Null
MF	 –	 Middle	 Forward
F	 -‐	 Forward

L	 -‐	 Left
ML	 –	 Middle	 Left
N	 –	 Null
MR	 –	 Middle	 Right
R	 -‐	 Right

0

ML

6.05.5

0.25
0.5
0.75
1.0

4

L N

D	 [V]

µ(D)

6.84.5

b)

NR R

6.5

	
Figure	 7.	 Fuzzy	 outputs	 definition	 a)	 Movement,	 b)	 Direction	
outputs

Static and dynamic fuzzy controllers

Navigation circumstances presented above could be
used to define static and dynamic {\it fuzzy logic}
controllers. A static FLC operates with the current
sensor data to obtain the outputs (Strategy-A), but a
dynamic FLC considers current and past values from
sensors to obtain the outputs (Strategies B and C). A
study of a static controller behavior is presented below
in order to see how the information from the past is not
affecting the firing rules. It was used the proposed
Strategy-C in this analysis.

The study case has the following conditions:
there are objects blocking the sensors S1 and S2,
approaching at different speeds from a distance
considered far. This is illustrated in Figure	 8.

If the controller has a set of fixed linguistic rules
(as those in Table	 2) and it is assumed that the rules
(10, 9, 7 and 4) are affected for specific inputs. The
firing strength graphs obtained in this case study are
shown in Figure	 9.
The firing strength shows how the rules change
according to the movement of the EW. The Speed
response is presented in Figure	 10.a. which shows
actions executed. In the first configuration, distance
registered in sensors S1 and S2 decrease at the same
rate. In the velocity graph as the distance becomes
small, forward speed is needed to slow down to avoid
collision up to the moment it changes direction to
backward. Meanwhile, in the angular velocity response
no change in direction is registered. However, for the
second response presented in Figure	 10.b.
corresponding to the other configuration, forward
speed decreases slowly until it changes to backward
when both sensors are completely blocked. Because S2
arrives first at the close region, a left angular velocity
is registered.

object

S1 S2

S3

96 cm74 cm

4 cm

object

7 cm

object

S1 S2

S3

95 cm84 cm

3 cm

object

6 cm

	
Figure	 8.	 Case	 Study	 regarding	 the	 configuration	 when	 both	
sensors	 change	 values	 (a)	 at	 same	 speed	 and	 (b)	 S1	 changes	
faster	 than	 S2

a)

b)

Figure	 9.	 Firing	 strength	 graphs	 for	 conditions	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 the	 different	
speed

	

	

	

	

	

	

0

50

100

020406080100
0

0.2

0.4

0.6

0.8

1

S1 [cm]

rule 7

rule 4

rule 9

S2 [cm]

rule 10

Fi
rin

g
St

re
ng

th

0

50

100

0

50

100
0

0.2

0.4

0.6

0.8

1

rule 11

rule 10

S1 [cm]

rule 4

rule 9

S2 [cm]

Fi
rin

g
St

re
ng

th

Figure 8. Case Study regarding the configuration
when both sensors change values (a) at same
speed and (b) S1 changes faster than S2.

0

MB

5.65.2

0.25
0.5
0.75
1.0

4.2

B N

M	 [V]

µ(M)

6.24.3

a)

MF F

6.0

B	 -‐	 Backward
MB	 –	 Middle	 Backward
N	 –	 Null
MF	 –	 Middle	 Forward
F	 -‐	 Forward

L	 -‐	 Left
ML	 –	 Middle	 Left
N	 –	 Null
MR	 –	 Middle	 Right
R	 -‐	 Right

0

ML

6.05.5

0.25
0.5
0.75
1.0

4

L N

D	 [V]

µ(D)

6.84.5

b)

NR R

6.5

	
Figure	 7.	 Fuzzy	 outputs	 definition	 a)	 Movement,	 b)	 Direction	
outputs

Static and dynamic fuzzy controllers

Navigation circumstances presented above could be
used to define static and dynamic {\it fuzzy logic}
controllers. A static FLC operates with the current
sensor data to obtain the outputs (Strategy-A), but a
dynamic FLC considers current and past values from
sensors to obtain the outputs (Strategies B and C). A
study of a static controller behavior is presented below
in order to see how the information from the past is not
affecting the firing rules. It was used the proposed
Strategy-C in this analysis.

The study case has the following conditions:
there are objects blocking the sensors S1 and S2,
approaching at different speeds from a distance
considered far. This is illustrated in Figure	 8.

If the controller has a set of fixed linguistic rules
(as those in Table	 2) and it is assumed that the rules
(10, 9, 7 and 4) are affected for specific inputs. The
firing strength graphs obtained in this case study are
shown in Figure	 9.
The firing strength shows how the rules change
according to the movement of the EW. The Speed
response is presented in Figure	 10.a. which shows
actions executed. In the first configuration, distance
registered in sensors S1 and S2 decrease at the same
rate. In the velocity graph as the distance becomes
small, forward speed is needed to slow down to avoid
collision up to the moment it changes direction to
backward. Meanwhile, in the angular velocity response
no change in direction is registered. However, for the
second response presented in Figure	 10.b.
corresponding to the other configuration, forward
speed decreases slowly until it changes to backward
when both sensors are completely blocked. Because S2
arrives first at the close region, a left angular velocity
is registered.

object

S1 S2

S3

96 cm74 cm

4 cm

object

7 cm

object

S1 S2

S3

95 cm84 cm

3 cm

object

6 cm

	
Figure	 8.	 Case	 Study	 regarding	 the	 configuration	 when	 both	
sensors	 change	 values	 (a)	 at	 same	 speed	 and	 (b)	 S1	 changes	
faster	 than	 S2

a)

b)

Figure	 9.	 Firing	 strength	 graphs	 for	 conditions	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 the	 different	
speed

	

	

	

	

	

	

0

50

100

020406080100
0

0.2

0.4

0.6

0.8

1

S1 [cm]

rule 7

rule 4

rule 9

S2 [cm]

rule 10

Fi
rin

g
St

re
ng

th

0

50

100

0

50

100
0

0.2

0.4

0.6

0.8

1

rule 11

rule 10

S1 [cm]

rule 4

rule 9

S2 [cm]

Fi
rin

g
St

re
ng

th

Figure 9. Firing strength graphs for conditions
(a) obstacles moving at the same speed (b)
obstacles moving at the different speed.

a)

b)

Figure	 10.	 The	 velocity	 graphs	 for	 configurations	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 different	 speed.	

The FPGA controller implementation

In fact, the controllers implemented in software
platform cannot operate under deterministic processing
time [25]; hence, the processing cycles running on
LabVIEW cannot be greater than milliseconds and the
real time applications which need deterministic time do
not use a software platform.
For the EW application is very important to ensure that
the system will execute without interruptions or
possible operating system failures. In addition, it is
necessary to have a very fast response because a
person’s integrity depends on it. Hardware designed
controllers can solve the mentioned drawbacks of the
software implemented ones. Frequently, FPGAs are
used because they are accessible in different locations
as embedded systems, and because of their processing
characteristics the speed range of nanoseconds can be
reached for the operating cycles. If the FPGA is used,
the information is processed inside the chip and the
computer is required only for setting the initial
conditions of the FCL, thus no operating system
interruptions appear. Based in those advantages, it was
proposed an alternative version of the system named as

“The hardware implementation” which components
are shown in Figure	 11.

I/O interface

Computer

NI cRIO-9014

FPGA

Analog Output
Module

Digital I/O
Module

Wheelchair
Quickie P222-SE

Motors

PING)))
Sensors

	
Figure	 11.	 Components	 of	 the	 wheelchair	 system	 implemented	

in	 the	 FPGA

It was used a NI Compact-RIO (c-RIO) 9014 to
implement a deterministic real-time system. The c-
RIO combines the real-time approach and
reconfigurable FPGA technologies in the same device
for embedded control, data acquisition and analysis.
This device supports interchangeable modules for I/O
to access data to the Spartan-3 Xilinx chip with 3
million equivalent gates, besides it integrates a
40MHz clock. In this hardware implementation the
ultrasonic sensors are connected directly to the
device, thus the processing time is reduced because it
is not necessary a serial communication port as in the
software system. For all these reasons, the hardware
implementation is expected to provide better results.

Only 2/4 analog output channels from the NI C-
Series 9263 module and 6/8 high speed digital I/O
from the NI 9401 C-Series module were used. DIO0-
DIO3 were configured as digital inputs and DIO4-
DIO7 as outputs. The interface uses a diode and a
resistance to implement a bidirectional ultrasonic line
in the NI 9401 module as shown in Figure	 12. As
explained with the microcontroller, the FPGA
implementation sends a pulse to the ultrasonic sensor
and waits to receive the response. It is used the same
sampling time as in the software implementation: 100
ms. The 9263 analog output module is used for
sending control voltage (channels AO0 and A01) to
the wheelchair´s joystick, in the same way the NI-
DAQ9611 does in the software implementation.

9401

G
N
D

5V SI
G

DIO0

DIO4

9263

AO0

A01

Wheelchair
Quickie	 P222-‐SE	 Joystick

Compact	 RIO	
9014

10	 KΩ	

	
Figure	 12.	 Digital	 I/O	 and	 analog	 output	 modules	 configuration

0 1 2 3 4 5 6 7
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

Figure 10. The velocity graphs for configurations
(a) obstacles moving at the same speed (b)
obstacles moving at different speed.

10.b. corresponding to the other configuration,
forward speed decreases slowly until it changes
to backward when both sensors are completely
blocked. Because S2 arrives first at the close
region, a left angular velocity is registered.

The FPGA controller implementation

In fact, the controllers implemented in software
platform cannot operate under deterministic
processing time [25]; hence, the processing cycles
running on LabVIEW cannot be greater than
milliseconds and the real time applications which
need deterministic time do not use a software
platform.

134 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

a)

b)

Figure	 10.	 The	 velocity	 graphs	 for	 configurations	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 different	 speed.	

The FPGA controller implementation

In fact, the controllers implemented in software
platform cannot operate under deterministic processing
time [25]; hence, the processing cycles running on
LabVIEW cannot be greater than milliseconds and the
real time applications which need deterministic time do
not use a software platform.
For the EW application is very important to ensure that
the system will execute without interruptions or
possible operating system failures. In addition, it is
necessary to have a very fast response because a
person’s integrity depends on it. Hardware designed
controllers can solve the mentioned drawbacks of the
software implemented ones. Frequently, FPGAs are
used because they are accessible in different locations
as embedded systems, and because of their processing
characteristics the speed range of nanoseconds can be
reached for the operating cycles. If the FPGA is used,
the information is processed inside the chip and the
computer is required only for setting the initial
conditions of the FCL, thus no operating system
interruptions appear. Based in those advantages, it was
proposed an alternative version of the system named as

“The hardware implementation” which components
are shown in Figure	 11.

I/O interface

Computer

NI cRIO-9014

FPGA

Analog Output
Module

Digital I/O
Module

Wheelchair
Quickie P222-SE

Motors

PING)))
Sensors

	
Figure	 11.	 Components	 of	 the	 wheelchair	 system	 implemented	

in	 the	 FPGA

It was used a NI Compact-RIO (c-RIO) 9014 to
implement a deterministic real-time system. The c-
RIO combines the real-time approach and
reconfigurable FPGA technologies in the same device
for embedded control, data acquisition and analysis.
This device supports interchangeable modules for I/O
to access data to the Spartan-3 Xilinx chip with 3
million equivalent gates, besides it integrates a
40MHz clock. In this hardware implementation the
ultrasonic sensors are connected directly to the
device, thus the processing time is reduced because it
is not necessary a serial communication port as in the
software system. For all these reasons, the hardware
implementation is expected to provide better results.

Only 2/4 analog output channels from the NI C-
Series 9263 module and 6/8 high speed digital I/O
from the NI 9401 C-Series module were used. DIO0-
DIO3 were configured as digital inputs and DIO4-
DIO7 as outputs. The interface uses a diode and a
resistance to implement a bidirectional ultrasonic line
in the NI 9401 module as shown in Figure	 12. As
explained with the microcontroller, the FPGA
implementation sends a pulse to the ultrasonic sensor
and waits to receive the response. It is used the same
sampling time as in the software implementation: 100
ms. The 9263 analog output module is used for
sending control voltage (channels AO0 and A01) to
the wheelchair´s joystick, in the same way the NI-
DAQ9611 does in the software implementation.

9401

G
N
D

5V SI
G

DIO0

DIO4

9263

AO0

A01

Wheelchair
Quickie	 P222-‐SE	 Joystick

Compact	 RIO	
9014

10	 KΩ	

	
Figure	 12.	 Digital	 I/O	 and	 analog	 output	 modules	 configuration

0 1 2 3 4 5 6 7
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

Figure 11. Components of the wheelchair system implemented in the FPGA.

a)

b)

Figure	 10.	 The	 velocity	 graphs	 for	 configurations	 (a)	 obstacles	
moving	 at	 the	 same	 speed	 (b)	 obstacles	 moving	 at	 different	 speed.	

The FPGA controller implementation

In fact, the controllers implemented in software
platform cannot operate under deterministic processing
time [25]; hence, the processing cycles running on
LabVIEW cannot be greater than milliseconds and the
real time applications which need deterministic time do
not use a software platform.
For the EW application is very important to ensure that
the system will execute without interruptions or
possible operating system failures. In addition, it is
necessary to have a very fast response because a
person’s integrity depends on it. Hardware designed
controllers can solve the mentioned drawbacks of the
software implemented ones. Frequently, FPGAs are
used because they are accessible in different locations
as embedded systems, and because of their processing
characteristics the speed range of nanoseconds can be
reached for the operating cycles. If the FPGA is used,
the information is processed inside the chip and the
computer is required only for setting the initial
conditions of the FCL, thus no operating system
interruptions appear. Based in those advantages, it was
proposed an alternative version of the system named as

“The hardware implementation” which components
are shown in Figure	 11.

I/O interface

Computer

NI cRIO-9014

FPGA

Analog Output
Module

Digital I/O
Module

Wheelchair
Quickie P222-SE

Motors

PING)))
Sensors

	
Figure	 11.	 Components	 of	 the	 wheelchair	 system	 implemented	

in	 the	 FPGA

It was used a NI Compact-RIO (c-RIO) 9014 to
implement a deterministic real-time system. The c-
RIO combines the real-time approach and
reconfigurable FPGA technologies in the same device
for embedded control, data acquisition and analysis.
This device supports interchangeable modules for I/O
to access data to the Spartan-3 Xilinx chip with 3
million equivalent gates, besides it integrates a
40MHz clock. In this hardware implementation the
ultrasonic sensors are connected directly to the
device, thus the processing time is reduced because it
is not necessary a serial communication port as in the
software system. For all these reasons, the hardware
implementation is expected to provide better results.

Only 2/4 analog output channels from the NI C-
Series 9263 module and 6/8 high speed digital I/O
from the NI 9401 C-Series module were used. DIO0-
DIO3 were configured as digital inputs and DIO4-
DIO7 as outputs. The interface uses a diode and a
resistance to implement a bidirectional ultrasonic line
in the NI 9401 module as shown in Figure	 12. As
explained with the microcontroller, the FPGA
implementation sends a pulse to the ultrasonic sensor
and waits to receive the response. It is used the same
sampling time as in the software implementation: 100
ms. The 9263 analog output module is used for
sending control voltage (channels AO0 and A01) to
the wheelchair´s joystick, in the same way the NI-
DAQ9611 does in the software implementation.

9401

G
N
D

5V SI
G

DIO0

DIO4

9263

AO0

A01

Wheelchair
Quickie	 P222-‐SE	 Joystick

Compact	 RIO	
9014

10	 KΩ	

	
Figure	 12.	 Digital	 I/O	 and	 analog	 output	 modules	 configuration

0 1 2 3 4 5 6 7
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

Ve
lo

ci
ty

 [%
]

time [s]

Forward

Backward

0 1 2 3 4 5 6 7 8 9
-100

-50

0

50

100

An
gu

la
r V

el
oc

ity
 [%

]

time [s]

Left

Right

Figure 12. Digital I/O and analog output modules configuration.

For the EW application is very important
to ensure that the system will execute without
interruptions or possible operating system
failures. In addition, it is necessary to have a
very fast response because a person’s integrity
depends on it. Hardware designed controllers can
solve the mentioned drawbacks of the software
implemented ones. Frequently, FPGAs are used
because they are accessible in different locations
as embedded systems, and because of their
processing characteristics the speed range of
nanoseconds can be reached for the operating
cycles. If the FPGA is used, the information
is processed inside the chip and the computer is

required only for setting the initial conditions of
the FCL, thus no operating system interruptions
appear. Based in those advantages, it was
proposed an alternative version of the system
named as “The hardware implementation” which
components are shown in Figure 11.

It was used a NI Compact-RIO (c-RIO)
9014 to implement a deterministic real-time
system. The c-RIO combines the real-time
approach and reconfigurable FPGA technologies
in the same device for embedded control,
data acquisition and analysis. This device
supports interchangeable modules for I/O to
access data to the Spartan-3 Xilinx chip with 3

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 135

3.
72
	 m

1.86m 2.48	 m

.82	 m

En
d

Starting	
position

.62	 m

.55	 m1.24	 m

1.24	 m

	
Figure	 13.	 Maze	 test	 scenario

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions; all
the dimensions of the maze are presented in Figure	 13.
The target of the electric wheelchair is to navigate from
the initial point to the final one without colliding
against the walls.
Notice that the scenario has right angle corners, and for
security matters flexible walls were used. All the
experiments were performed with the same start
position. The strategies A, B, C implemented in
software and Strategy-C implemented in hardware
were tested in this maze.

RESULTS

Software implementation

For the software implementation, the FCL strategies
were realized with the “PID and {\it fuzzy logic}
Control toolkit” in LabVIEW 2013. The control was
integrated to the LabVIEW interface as presented in
the flux diagram shown in Figure	 14.

start

Fuzzy control sets
and rules

Configure serial
port

Stop

Get distance

Mode

Fuzzy

Manual

Voltaje
out

	
Figure	 14.	 Flux	 diagram	 for	 software	 controller	 implementation

In Figure	 15 are presented the components assembly
under the EW seat for the software implementation.

	
Figure	 15.	 Installed	 components	 for	 the	 software	 version	

The hardware implementation	

Apart from the software version, the hardware
implementation is described. Tasks done by the real-
time controller are indicated in Figure	 16 and they
were programmed in the LabVIEW FPGA toolkit.
The sensors distance to objects are obtained and with
those data other inputs are computed: dS1, dS2, S.
Numerical values are normalized to fit the fixed point
format used by the fuzzy controller for the decision
making. Obtained outputs are de-normalized to fit
useful voltages for the EW.

start

Get	 distance
S1,	 S2,	 S3

Normalize	 data

Compute	 inputs	
S,	 dS1,	 dS2

Fuzzy

Stop

Voltage	 outNormalize	 data

End	 	
Figure	 16.	 {\it	 fuzzy	 logic}	 controller	 block	 diagram	 implemented	

in	 the	 FPGA.	

Figure 13. Maze test scenario.

million equivalent gates, besides it integrates a
40MHz clock. In this hardware implementation
the ultrasonic sensors are connected directly
to the device, thus the processing time
is reduced because it is not necessary a
serial communication port as in the software
system. For all these reasons, the hardware
implementation is expected to provide better
results.

Only 2/4 analog output channels from the
NI C-Series 9263 module and 6/8 high speed
digital I/O from the NI 9401 C-Series module
were used. DIO0-DIO3 were configured as digital
inputs and DIO4-DIO7 as outputs. The interface
uses a diode and a resistance to implement
a bidirectional ultrasonic line in the NI 9401
module as shown in Figure 12. As explained with
the microcontroller, the FPGA implementation
sends a pulse to the ultrasonic sensor and waits
to receive the response. It is used the same
sampling time as in the software implementation:
100 ms. The 9263 analog output module is
used for sending control voltage (channels AO0
and A01) to the wheelchair’s joystick, in the
same way the NI-DAQ9611 does in the software
implementation.

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions;
all the dimensions of the maze are presented in
Figure 13. The target of the electric wheelchair
is to navigate from the initial point to the final
one without colliding against the walls.

3.
72

	 m

1.86m 2.48	 m

.82	 m

En
d

Starting	
position

.62	 m

.55	 m1.24	 m

1.24	 m

	
Figure	 13.	 Maze	 test	 scenario

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions; all
the dimensions of the maze are presented in Figure	 13.
The target of the electric wheelchair is to navigate from
the initial point to the final one without colliding
against the walls.
Notice that the scenario has right angle corners, and for
security matters flexible walls were used. All the
experiments were performed with the same start
position. The strategies A, B, C implemented in
software and Strategy-C implemented in hardware
were tested in this maze.

RESULTS

Software implementation

For the software implementation, the FCL strategies
were realized with the “PID and {\it fuzzy logic}
Control toolkit” in LabVIEW 2013. The control was
integrated to the LabVIEW interface as presented in
the flux diagram shown in Figure	 14.

start

Fuzzy control sets
and rules

Configure serial
port

Stop

Get distance

Mode

Fuzzy

Manual

Voltaje
out

	
Figure	 14.	 Flux	 diagram	 for	 software	 controller	 implementation

In Figure	 15 are presented the components assembly
under the EW seat for the software implementation.

	
Figure	 15.	 Installed	 components	 for	 the	 software	 version	

The hardware implementation	

Apart from the software version, the hardware
implementation is described. Tasks done by the real-
time controller are indicated in Figure	 16 and they
were programmed in the LabVIEW FPGA toolkit.
The sensors distance to objects are obtained and with
those data other inputs are computed: dS1, dS2, S.
Numerical values are normalized to fit the fixed point
format used by the fuzzy controller for the decision
making. Obtained outputs are de-normalized to fit
useful voltages for the EW.

start

Get	 distance
S1,	 S2,	 S3

Normalize	 data

Compute	 inputs	
S,	 dS1,	 dS2

Fuzzy

Stop

Voltage	 outNormalize	 data

End	 	
Figure	 16.	 {\it	 fuzzy	 logic}	 controller	 block	 diagram	 implemented	

in	 the	 FPGA.	

 Figure 14. Flux diagram for software controller

implementation.

3.
72
	 m

1.86m 2.48	 m

.82	 m

En
d

Starting	
position

.62	 m

.55	 m1.24	 m

1.24	 m

	
Figure	 13.	 Maze	 test	 scenario

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions; all
the dimensions of the maze are presented in Figure	 13.
The target of the electric wheelchair is to navigate from
the initial point to the final one without colliding
against the walls.
Notice that the scenario has right angle corners, and for
security matters flexible walls were used. All the
experiments were performed with the same start
position. The strategies A, B, C implemented in
software and Strategy-C implemented in hardware
were tested in this maze.

RESULTS

Software implementation

For the software implementation, the FCL strategies
were realized with the “PID and {\it fuzzy logic}
Control toolkit” in LabVIEW 2013. The control was
integrated to the LabVIEW interface as presented in
the flux diagram shown in Figure	 14.

start

Fuzzy control sets
and rules

Configure serial
port

Stop

Get distance

Mode

Fuzzy

Manual

Voltaje
out

	
Figure	 14.	 Flux	 diagram	 for	 software	 controller	 implementation

In Figure	 15 are presented the components assembly
under the EW seat for the software implementation.

	
Figure	 15.	 Installed	 components	 for	 the	 software	 version	

The hardware implementation	

Apart from the software version, the hardware
implementation is described. Tasks done by the real-
time controller are indicated in Figure	 16 and they
were programmed in the LabVIEW FPGA toolkit.
The sensors distance to objects are obtained and with
those data other inputs are computed: dS1, dS2, S.
Numerical values are normalized to fit the fixed point
format used by the fuzzy controller for the decision
making. Obtained outputs are de-normalized to fit
useful voltages for the EW.

start

Get	 distance
S1,	 S2,	 S3

Normalize	 data

Compute	 inputs	
S,	 dS1,	 dS2

Fuzzy

Stop

Voltage	 outNormalize	 data

End	 	
Figure	 16.	 {\it	 fuzzy	 logic}	 controller	 block	 diagram	 implemented	

in	 the	 FPGA.	

Figure 15. Installed components for the software
version

Notice that the scenario has right angle
corners, and for security matters flexible walls
were used. All the experiments were performed
with the same start position. The strategies
A, B, C implemented in software and Strategy-
C implemented in hardware were tested in this
maze.

RESULTS

Software implementation

For the software implementation, the FCL
strategies were realized with the “PID and fuzzy

136 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

3.
72

	 m

1.86m 2.48	 m

.82	 m

En
d

Starting	
position

.62	 m

.55	 m1.24	 m

1.24	 m

	
Figure	 13.	 Maze	 test	 scenario

Control strategies test and validation

A maze was designed for validating the proposed
controllers under different navigation conditions; all
the dimensions of the maze are presented in Figure	 13.
The target of the electric wheelchair is to navigate from
the initial point to the final one without colliding
against the walls.
Notice that the scenario has right angle corners, and for
security matters flexible walls were used. All the
experiments were performed with the same start
position. The strategies A, B, C implemented in
software and Strategy-C implemented in hardware
were tested in this maze.

RESULTS

Software implementation

For the software implementation, the FCL strategies
were realized with the “PID and {\it fuzzy logic}
Control toolkit” in LabVIEW 2013. The control was
integrated to the LabVIEW interface as presented in
the flux diagram shown in Figure	 14.

start

Fuzzy control sets
and rules

Configure serial
port

Stop

Get distance

Mode

Fuzzy

Manual

Voltaje
out

	
Figure	 14.	 Flux	 diagram	 for	 software	 controller	 implementation

In Figure	 15 are presented the components assembly
under the EW seat for the software implementation.

	
Figure	 15.	 Installed	 components	 for	 the	 software	 version	

The hardware implementation	

Apart from the software version, the hardware
implementation is described. Tasks done by the real-
time controller are indicated in Figure	 16 and they
were programmed in the LabVIEW FPGA toolkit.
The sensors distance to objects are obtained and with
those data other inputs are computed: dS1, dS2, S.
Numerical values are normalized to fit the fixed point
format used by the fuzzy controller for the decision
making. Obtained outputs are de-normalized to fit
useful voltages for the EW.

start

Get	 distance
S1,	 S2,	 S3

Normalize	 data

Compute	 inputs	
S,	 dS1,	 dS2

Fuzzy

Stop

Voltage	 outNormalize	 data

End	 	
Figure	 16.	 {\it	 fuzzy	 logic}	 controller	 block	 diagram	 implemented	

in	 the	 FPGA.	

Figure 16. fuzzy logic controller block diagram

implemented in the FPGA.

logic Control toolkit” in LabVIEW 2013. The
control was integrated to the LabVIEW interface
as presented in the flux diagram shown in Figure
14.

In Figure 15 are presented the components
assembly under the EW seat for the software
implementation.

The hardware implementation

Apart from the software version, the hardware
implementation is described. Tasks done by the
real-time controller are indicated in Figure 16
and they were programmed in the LabVIEW
FPGA toolkit. The sensors distance to objects
are obtained and with those data other inputs
are computed: dS1, dS2, S. Numerical values
are normalized to fit the fixed point format used
by the fuzzy controller for the decision making.
Obtained outputs are de-normalized to fit useful
voltages for the EW.

Variable Y is not considered because S
variable helps the controller to approach the
curves better. The rule set for the FPGA
implementation is shown in Table 3.

Variable Y is not considered because S variable helps
the controller to approach the curves better. The rule
set for the FPGA implementation is shown in Table	 3.

Table	 3.	 The	 FPGA	 implementation	 rule	 set	

1 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁
2 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷: 𝐿
3 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑅
4 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑅
5 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑁
6 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷: 𝐿
7 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝐿
8 𝑠:𝑍 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑁
9 𝑠:𝑃 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝑅
10 𝑑𝑠!:𝐺𝐹 ⊔ 𝑑𝑠!:𝐺𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑁

In Figure	 17 is presented the configured fuzzy
controller code created on LabVIEW FPGA toolkit,
constructed with fixed point operations and configured
as hardware into the FPGA chip. There have been
labeled five different parts: digital I/O port and line
selection for sending/receiving data from ultrasonic
sensors, normalization blocks to scale signals in useful
ranges for the fuzzy controller, the fuzzy controller
block (which contains the membership functions, the
inference engine and the rules base), the output
normalization blocks for values computed, and finally,
the analog output channels selected to supply voltage
for movement and steering actions between 4 and 7
volts. After the compilation into the FPGA, the
consumed resources shown in the summary with this
configuration is shown in the next table:

Table	 4.	 Consumed	 resources	 with	 the	 system	

Functional
Block Logo Total

slices
Slice
registers

Slice
LUTs

T1
Wheelchair
Control

NA 9794 9562 14888

Moreover, in Figure	 18 is presented the c-RIO
installation which is online with the PC in the
hardware implementation. In figure Figure	 19 is
presented the complete wheelchair system.

	
Figure	 18.	 NI	 Compact-‐RIO	 installed	 for	 the	 real-‐time	 system	

	
Figure	 17.	 {\it	 fuzzy	 logic}	 code	 programmed	 with	 LabVIEW	 FPGA	 toolkit Figure 17. Fuzzy logic code programmed with LabVIEW FPGA toolkit.

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 137

Table 3. The FPGA implementation rule set
1 s1 : C ∩ s2 : C ∩ s3 : C ⇒M : N ∩D : N
2 s : N ∩ s1 : F ∩ s2 : C ⇒M : MF ∩D : L
3 s : P ∩ s1 : C ∩ s2 : F ⇒M : MF ∩D : R
4 s : N ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : R
5 s : Z ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : N
6 s : P ∩ s1 : C ∩ s2 : C ⇒M : B ∩D : L
7 s : N ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : ML
8 s : Z ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : N
9 s : P ∩ s1 : F ∩ s2 : F ⇒M : F ∩D : MR
10 ds1 : GF ∪ ds2 : GF ⇒M : MF ∩D : N

Table 4. Consumed resources with the system
Functional Logo Total Slice Slice
Block slices registers LUTs
T1
Wheelchair NA 9794 9562 14888
Control

Variable Y is not considered because S variable helps
the controller to approach the curves better. The rule
set for the FPGA implementation is shown in Table	 3.

Table	 3.	 The	 FPGA	 implementation	 rule	 set	

1 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑁 ⊓ 𝐷:𝑁
2 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷: 𝐿
3 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑅
4 𝑠:𝑁 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑅
5 𝑠:𝑍 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷:𝑁
6 𝑠:𝑃 ⊓ 𝑠!:𝐶 ⊓ 𝑠!:𝐶 ⇒ 𝑀:𝐵 ⊓ 𝐷: 𝐿
7 𝑠:𝑁 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝐿
8 𝑠:𝑍 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑁
9 𝑠:𝑃 ⊓ 𝑠!:𝐹 ⊓ 𝑠!:𝐹 ⇒ 𝑀:𝐹 ⊓ 𝐷:𝑀𝑅
10 𝑑𝑠!:𝐺𝐹 ⊔ 𝑑𝑠!:𝐺𝐹 ⇒ 𝑀:𝑀𝐹 ⊓ 𝐷:𝑁

In Figure	 17 is presented the configured fuzzy
controller code created on LabVIEW FPGA toolkit,
constructed with fixed point operations and configured
as hardware into the FPGA chip. There have been
labeled five different parts: digital I/O port and line
selection for sending/receiving data from ultrasonic
sensors, normalization blocks to scale signals in useful
ranges for the fuzzy controller, the fuzzy controller
block (which contains the membership functions, the
inference engine and the rules base), the output
normalization blocks for values computed, and finally,
the analog output channels selected to supply voltage
for movement and steering actions between 4 and 7
volts. After the compilation into the FPGA, the
consumed resources shown in the summary with this
configuration is shown in the next table:

Table	 4.	 Consumed	 resources	 with	 the	 system	

Functional
Block Logo Total

slices
Slice
registers

Slice
LUTs

T1
Wheelchair
Control

NA 9794 9562 14888

Moreover, in Figure	 18 is presented the c-RIO
installation which is online with the PC in the
hardware implementation. In figure Figure	 19 is
presented the complete wheelchair system.

	
Figure	 18.	 NI	 Compact-‐RIO	 installed	 for	 the	 real-‐time	 system	

	
Figure	 17.	 {\it	 fuzzy	 logic}	 code	 programmed	 with	 LabVIEW	 FPGA	 toolkit

Figure 18. NI Compact-RIO installed for the
real-time system.

In Figure 17 is presented the configured
fuzzy controller code created on LabVIEW
FPGA toolkit, constructed with fixed point
operations and configured as hardware into
the FPGA chip. There have been labeled
five different parts: digital I/O port and
line selection for sending/receiving data from
ultrasonic sensors, normalization blocks to scale
signals in useful ranges for the fuzzy controller,
the fuzzy controller block (which contains the
membership functions, the inference engine and
the rules base), the output normalization blocks
for values computed, and finally, the analog

	

Figure	 19.	 The	 complete	 system.	 For	 the	 hardware	
implementation,	 the	 laptop	 is	 only	 used	 for	 setting	 the	 controller	
initial	 conditions	 and	 to	 register	 data.	

The maze test validation for the software version

The three strategies A, B, and C implemented in
LabVIEW were tested, but only the third one was
completely successful. Figure	 20 presents the observed
trajectories for the test. Images were taken from an
upper view and because of that perspective some walls
look wider. By using strategy-A, the wheelchair
crashed four times as indicated with arrows in Figure	
20.a. and it was very close to the left wall, however it
finished the maze in 1.26 minutes. Strategy-B did not
finish the maze because wheelchair got stocked in the
first corner as can be observed in Figure	 20.b. The third
trajectory corresponds to strategy-C, which was
completed in 1.10 minutes without colliding. Four
zones are labelled in Figure	 20.c. as “1”, “2”, “3” and
“4” to analyze them. It seems that in the middle of the
curve (zone 2) there was a collision, but it is only a
perspective effect.

	
a)	

	
b)	

	
c)	

Figure	 20.	 Obtained	 trajectories	 in	 test	 scenario.	 Dots	 represent	
lateral	 sensor	 position	 during	 the	 route,	 a)	 Strategy	 A,	 b)	

Strategy	 B,	 c)	 Strategy	 C	

	
Software and hardware implementations

Figure	 21 shows the results trajectories observed in
the hardware and software implementations. It was
compared the Strategy-C implemented in software
and the strategy designed for the hardware in the
maze test.

Figure 19. The complete system. For the
hardware implementation, the laptop is only
used for setting the controller initial conditions
and to register data.

output channels selected to supply voltage for
movement and steering actions between 4 and 7
volts. After the compilation into the FPGA, the
consumed resources shown in the summary with
this configuration is shown in Table 4.

Moreover, in Figure 18 is presented the c-
RIO installation which is online with the PC in
the hardware implementation. In figure Figure
19 is presented the complete wheelchair system.

The maze test validation for the software
version

The three strategies A, B, and C implemented
in LabVIEW were tested, but only the third one
was completely successful. Figure 20 presents
the observed trajectories for the test. Images
were taken from an upper view and because
of that perspective some walls look wider.

138 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

	

Figure	 19.	 The	 complete	 system.	 For	 the	 hardware	
implementation,	 the	 laptop	 is	 only	 used	 for	 setting	 the	 controller	
initial	 conditions	 and	 to	 register	 data.	

The maze test validation for the software version

The three strategies A, B, and C implemented in
LabVIEW were tested, but only the third one was
completely successful. Figure	 20 presents the observed
trajectories for the test. Images were taken from an
upper view and because of that perspective some walls
look wider. By using strategy-A, the wheelchair
crashed four times as indicated with arrows in Figure	
20.a. and it was very close to the left wall, however it
finished the maze in 1.26 minutes. Strategy-B did not
finish the maze because wheelchair got stocked in the
first corner as can be observed in Figure	 20.b. The third
trajectory corresponds to strategy-C, which was
completed in 1.10 minutes without colliding. Four
zones are labelled in Figure	 20.c. as “1”, “2”, “3” and
“4” to analyze them. It seems that in the middle of the
curve (zone 2) there was a collision, but it is only a
perspective effect.

	
a)	

	
b)	

	
c)	

Figure	 20.	 Obtained	 trajectories	 in	 test	 scenario.	 Dots	 represent	
lateral	 sensor	 position	 during	 the	 route,	 a)	 Strategy	 A,	 b)	

Strategy	 B,	 c)	 Strategy	 C	

	
Software and hardware implementations

Figure	 21 shows the results trajectories observed in
the hardware and software implementations. It was
compared the Strategy-C implemented in software
and the strategy designed for the hardware in the
maze test.

Figure 20. Obtained trajectories in test scenario.
Dots represent lateral sensor position during the
route, a) Strategy A, b) Strategy B, c) Strategy
C.

a

B

Figure	 21.	 Hardware	 and	 software	 trajectory	 tracking	 comparison	
for	 the	 Strategy-‐C	 using,	 a)	 Computer	 device	 b)	 Compact-‐RIO	

DISCUSSION

Static and dynamic controllers comparative

As presented in Figure	 20, the Strategy-C was the only
one that completed the maze without colliding. The
differences between navigation strategies implemented
and the considerations done about dynamic and static
controllers are remarkable. A comparison between
Strategy-A and Strategy C shows that the last one
results more efficient in time. Further, as presented in
Figure	 20.c., in the zone labeled as “1” there were
oscillations caused by the wheelchair approaching to
the left wall and the controller action trying to correct
its trajectory. In zone “2”, a continuous soft curve to
turn is described contrasting the actions observed in
strategy-A (Figure	 20.a.), where it is notorious that for
the same curve the steering actions are more
complicated. In zone “3”, there are more oscillations
caused by the slow response of the system processing
data in software. When the computer takes a specific
action at some time instant, another obstacles is
detected by sensors. In addition, when the computer
sends data to the motors they react after some time.
This phenomenon is repeated several times until
stabilizes. Finally, in zone “4” the trajectory stabilizes
and only one abrupt controller correction is noted.
Other differences between the observed trajectories are
caused by the dynamic inputs considered in the
Strategy-C, which are designed to help the controller in
tasks as turning in a curve. For the static controller

implemented with Strategy-A, it is distinguished a
“squared” turn, but for the same zone the dynamic
controller uses data collected from past actions to
make decisions. This paper does not show all the
possible devices in which the controller could be
deployed, but it analyzed the performance of the
proposed controller in order to validate it. Normally,
micro-controllers are chipper than FPGAs, so it is a
very attractive possibility to implement this controller
using micro-controllers.

Comparative between real-time and software
versions

The hardware version describes smoother trajectories
and continuous movements, which are better in
contrast with the abrupt movements obtained with the
software implementation. The uncertainties exhibited
in the marked regions of Figure	 21.a. do not occur in
Figure	 21.b. and the described curve is smoother. In
this test, the measured time to complete the maze was
20 seconds, which is really fast compared to that
obtained in software Strategies A and C (1.26 and
1.19 seconds, respectively). Those differences
between both implementations are remarkable. It is
explained because the hardware version uses a
dedicated processor to acquire and process data that
do not depend on any operating system. The target
processor is networked to a host PC only for the
graphical interface and data logging. In Table	 5 is
presented a comparison.

Table	 5.	 Comparison	 table	 between	 hardware	 and	 software	
implementations	

Characteristic Software
implementation

Hardware
implementation

Trajectories Rough, abrupt Smooth, clean
Operations
cycle rate

500 ms 100 ms

Operative
system

Windows 7 None

Sensors 3 ultrasonic Parallax
PING)))

3 ultrasonic Parallax
PING)))

Sensors sample
time

100 ms 100 ms

Input
acquisition
device

Microcontroller BS2-IC
@ 20MHz

9401 digital inputs
module

Output
acquisition
device

NI USB 6211 9263 analog outputs
module

Maze time
consumed

1.19 sec 20 sec

Number of
rules

12 10

Processor Intel Core @ 2.4 GHz Spartan-3 Xilinx @ 40
MHz

Data Serial TCP/IP (just for data

Figure 21. Hardware and software trajectory
tracking comparison for the Strategy-C using, a)
Computer device b) Compact-RIO.

By using strategy-A, the wheelchair crashed four
times as indicated with arrows in Figure 20.a.
and it was very close to the left wall, however
it finished the maze in 1.26 minutes. Strategy-B
did not finish the maze because wheelchair got
stocked in the first corner as can be observed in
Figure 20.b. The third trajectory corresponds to
strategy-C, which was completed in 1.10 minutes
without colliding. Four zones are labelled in
Figure 20.c. as “1”, “2”, “3” and “4” to analyze
them. It seems that in the middle of the curve
(zone 2) there was a collision, but it is only a
perspective effect.

Software and hardware implementations

Figure 21 shows the results trajectories observed
in the hardware and software implementations.
It was compared the Strategy-C implemented
in software and the strategy designed for the
hardware in the maze test.

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 139

DISCUSSION

Static and dynamic controllers
comparative

As presented in Figure 20, the Strategy-C was
the only one that completed the maze without
colliding. The differences between navigation
strategies implemented and the considerations
done about dynamic and static controllers are
remarkable. A comparison between Strategy-
A and Strategy C shows that the last one
results more efficient in time. Further, as
presented in Figure 20.c., in the zone labeled
as “1” there were oscillations caused by the
wheelchair approaching to the left wall and the
controller action trying to correct its trajectory.
In zone “2”, a continuous soft curve to turn
is described contrasting the actions observed in
strategy-A (Figure 20.a.), where it is notorious
that for the same curve the steering actions
are more complicated. In zone “3”, there are
more oscillations caused by the slow response of
the system processing data in software. When
the computer takes a specific action at some
time instant, another obstacles is detected by
sensors. In addition, when the computer sends
data to the motors they react after some
time. This phenomenon is repeated several
times until stabilizes. Finally, in zone “4”
the trajectory stabilizes and only one abrupt
controller correction is noted.

Other differences between the observed
trajectories are caused by the dynamic inputs
considered in the Strategy-C, which are designed
to help the controller in tasks as turning in a
curve. For the static controller implemented
with Strategy-A, it is distinguished a “squared”
turn, but for the same zone the dynamic
controller uses data collected from past actions
to make decisions. This paper does not
show all the possible devices in which the
controller could be deployed, but it analyzed the
performance of the proposed controller in order
to validate it. Normally, micro-controllers are
chipper than FPGAs, so it is a very attractive
possibility to implement this controller using
micro-controllers.

Comparative between real-time and
software versions

The hardware version describes smoother
trajectories and continuous movements, which
are better in contrast with the abrupt movements
obtained with the software implementation. The
uncertainties exhibited in the marked regions of
Figure 21.a. do not occur in Figure 21.b. and
the described curve is smoother. In this test,
the measured time to complete the maze was 20
seconds, which is really fast compared to that
obtained in software Strategies A and C (1.26
and 1.19 seconds, respectively).

Table 5. Comparison table between hardware and software implementations
Characteristic Software Hardware

implementation implementation

Trajectories Rough, abrupt Smooth, clean
Operations cycle rate 500 ms 100 ms
Operative system Windows 7 None

Sensors 3 ultrasonic Parallax PING))) 3 ultrasonic Parallax PING)))
Sensors sample time 100 ms 100 ms

Input acquisition device Microcontroller BS2-IC @ 20MHz 9401 digital inputs module
Output acquisition device NI USB 6211 9263 analog outputs module

Maze time consumed 1.19 sec 20 sec
Number of rules 12 10

Processor Intel Core @ 2.4 GHz Spartan-3 Xilinx @ 40 MHz
Data Communication Serial TCP/IP

to the computer (just for data sharing)

140 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

Those differences between both implementations
are remarkable. It is explained because the
hardware version uses a dedicated processor to
acquire and process data that do not depend on
any operating system. The target processor is
networked to a host PC only for the graphical
interface and data logging. In Table 5 is
presented a comparison.

Sensors

As reviewed in the datasheet, the Tburst is 200 µs
and the maximum echo return pulse is 18.5 ms
for the maximum distance, tholdoff is 740 µs and
tout is 2 µs. Consequently, the fastest time in
the process of measuring data is calculated as:

5µ+ 750µ+ 18.5ms = 19.255ms

This sample time is very slow even for the
software version, and it limits the controller
speed response. The acquisition cycle for the
software and the hardware versions is fixed to
100ms. However, in the software version distance
data is passed from the microcontroller by a
serial communication to the computer and, after
calculating the outputs, the numerical result goes
to the 6211 module. This recurrent process
(indicated in Figure 14.) consumes 500 ms.
Meanwhile in the FPGA version, the analogous
process indicated in Figure 16 consumes 101 ms.
Since sampling time for acquiring distance is 100
ms, then only 1.7 ms are used by the fuzzy
controller. Comparing consumed time in the
hardware and software versions, it is remarkable
that FPGA is superior. Besides, the FPGA
implementation could process data faster but
it is limited by the ultrasonic sensors response
speed.

In order to work properly, the blocking
obstacles must be in front of the sensors sight
line to be detected because they are strictly
directional. However, the use of the dynamic
inputs increase their performance for avoiding
static obstacles.

CONCLUSIONS

Novel dynamic fuzzy logic navigation strategies
were proposed and evaluated using an electric
wheelchair. Although the ultrasonic sensors
provide limited information regarding the
navigation environment, the fuzzy logic
controllers work properly because the dynamic
information (time delay inputs) about the
navigation system was included in the linguistic
rules. The dynamic controllers do not change the
conventional structure of a fuzzy logic controller
but they modified the quality of the information
about the navigation environment by adding
input with delays. The main goal of this
controller is to extend the input information
using time delay signals, hence the controller is
able to find the correct solution using limited
input information.

Initially, a study of the navigation
performance on software of each controller was
presented in order to implement in real time the
best navigation controller. The implementation
based on hardware reaches excellent results and
the electric wheelchair movements are flatter
than movements implemented on software. Since
the FPGA implementation of the dynamic
controller shows reduction in time response, good
avoiding obstacles performance and less sever
movements, this is the best option to implement
a dynamic controller for an electric wheelchair.

One of the main limitations of the controller
are the blind points, caused by the number of
sonar sensors used (only two of them provide
information about the forward navigation).
Adding sensors could expand the information
from the environment of the actual prototype.
Besides, it is a good idea to extract dynamic
inputs from the new sensors. Although the
dynamic controller increases the navigation
performance, the number of fuzzy rules and
membership functions will be more and the
tuning process will be more complex. It is
recommended to use an optimization method,
i.e. genetic algorithms. On the other hand,
the electric wheelchair controller is not robust
to noisy signals, so it is recommended to use an
adaptive filter and sensor signal estimator.

Rojas et al. Novel Fuzzy Logic Controller Based on Time Delay Inputs for a Conventional Electric Wheelchair. 141

In order to have more information about the
quantitative performance of the prototype, other
issues could be evaluated. For example: the
consumed time to solve alternatively mazes, the
necessary distances for detection between the
mobile objects and the wheelchair, the response
to materials and composition of different objects
and the behavior of the dynamic navigation
strategy in small space scenarios.

REFERENCES

1. World Health Organization, “World report
on disability”, The World Bank, 2011.

2. D. Ding and R. A. Cooper, “Electric-
Powered Wheelchairs, A Review of
Current Technology and Insight into
Future Direction”, IEEE Control System
Magazine, vol. 25, no. 2, pp. 22-34, 2005.

3. C. Urdiales, Collaborative Assistive Robot
for Mobility Enhancement (CARMEN),
Malaga: Springer , 2013.

4. R. C. Simpson, “Smart Wheelchairs:
A literature review”, Journal of
Rehabilitation Research & Development,
vol. 42, no. 4, pp. 423-436, 2005.

5. P. Boucher, “Design and validation
of an intelligent wheelchair towards a
clinically-functional outcome”, Journal of
Neuroengineering and Rehabilitation, vol.
10, 2013.

6. S. P. Levine, “The NavChair Assistive
Wheelchair”, IEEE Transactions on
Rehabilitation Engineering, vol. 7, no. 4,
1999.

7. L. Conde, G. Pires and U. Nunes, “A
behavior based fuzzy control architecture
for path tracking and obstacle avoidance”,
in Proceedings of the 5th Portuguese
Conference on Automatic Control, 2002.

8. J. J. Slotine and L. W., Applied Nonlinear
Control, New Jersey: Prentice Hall, 1991.

9. L. Zadeh, "Fuzzy sets *," Information and
Control, vol. 8, no. 3, p. 338-353, 1965.

10. H. A. Hagras, “A Hierarchical Type-2 fuzzy
logic Control Architecture for Autonomous
Mobile Robots”, IEEE Transactions on
Fuzzy Systems, vol. 12, no 4, 2004.

11. S.-L. El-Teleity, “Fuzzy logic control
of an autonomous mobile robot”, de
Methods and Models in Automation and
Robotics (MMAR), 2011 16th International
Conference on, Miedzyzdroje, 2011.

12. K. D. a. S. T. G.P. Moustris, “Feedback
Equivalence and Control of Mobile Robots
Through a Scalable FPGA Architecture”,
de Recent Advances in Mobile Robotics,
InTech, 2011, pp. 401-426.

13. M. Njah and M. Jallouli, “Wheelchair
Obstacle Avoidance Based on Fuzzy
Controller and Ultrasonic Sensors”, in
International Conference on Computer
Applications Technology (ICCAT), Sousse,
2013.

14. G. Liu, “Fuzzy Controller for Obstacle
Avoidance in Electric Wheelchair with
Ultrasonic Sensors”, in International
Symposium on Computer Science and
Society, Kota Kinabalu, 2011.

15. G. Pires and U. Nunes, “A Wheelchair
Steered through Voice Commands and
Assisted by a Reactive Fuzzy-Logic
Controller. Journal of Intelligent and
Robotic Systems”, Journal of Intelligent
and Robotic Systems, vol. 34, no. 3, pp.
301-314, 2002

16. H. R. Moslehi, “Design and Development
of fuzzy logic Operated Smart Motorized
Wheelchair”, in 24th Canadian Conference
on Electrical and Computer Engineering
(CCECE), Niagara Falls, Canada., 2011.

17. I. Spacapan, J. Kocijan and T. Bajd,
“Simulation of fuzzy-logic-based intelligent
wheelchair control system”. Journal of
Intelligent & Robotic Systems, vol. 39, no.
2, pp. 227-241, 2004.

142 Revista Mexicana de Ingeniería Biomédica · volumen 35 · número 2 · Agosto, 2014

18. V. Tyagi, N. Gupta and P. Tyagi., “Smart
wheelchair using fuzzy inference system”,
in Global Humanitarian Technology
Conference: South Asia Satellite (GHTC-
SAS), 2013.

19. M. Ren and K. H.A., “A fuzzy logic map
matching for wheelchair navigation”, GPS
solutions, vol. 16, no. 3, pp. 273-282, 2012.

20. M. Poplawski and M. Bialko.,
“Implementation of parallel fuzzy logic
controller in FPGA circuit for guiding
electric wheelchair”, in Conference on
Human System Interactions, 2008.

21. P. Marek and M. Bialko, “Implementation
of fuzzy logic Controller in FPGA Circuit
for Guiding Electric Wheelchair”, in 11th
International Conference, ICAISC 2012,

Zakopane, Poland, 2012.

22. K. Parnell and R. Bryner, “Comparing and
Contrasting FPGA and Microprocessor
System Design and Development”, 21
July 2004. [Online]. Available:
http://www.xilinx.com/.

23. J. Songmin and e. al., “Multimodal
intelligent wheelchair control based
on fuzzy algorithm”, in International
Conference on Information and
Automation (ICIA), 2012.

24. Parallax Inc., “Product documentation
for the PING))) Ultrasonic Distance
Sensor”, 11 9 2009. [En línea]. Available:
http://www.parallax.com/sites/default/
files/downloads/28015-PING-Documen-
tation-v1.6.pdf.

