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ABSTRACT

In recent years, interactive media and tools, such as scientific simula-
tors and simulation environments or dynamic data visualizations, have 
became established methods in the neural, medical, physiological 
and biophysical sciences. This article presents two simulators designed 
and developed for the study of the passive properties of the axon and 
dendritic tree: HR2 and Rall1. The HR2 is an interactive program that 
reproduces the classic experiments of Hodgkin and Rushton (1946)1 to 
determine the electrical constants of a crustacean nerve fiber. Rall1 
is an interactive program that enables the study of the Rall model 
by reducing the dendritic tree to an electrically equivalent cylinder2. 
With these simulators, students can determine the time constant and 
electrotonic length in axons and dendrites. These simulators are pow-
erful tools for exploring and analyzing the complexity of the passive 
properties in neural information processing.

Key words: Neuroscience, electrophysiological simulators, passive 
properties, educational simulation.

RESUMEN

En los últimos años, los medios y herramientas interactivas, como 
los simuladores científicos, las simulaciones de medio ambiente o 
visualizaciones de datos dinámicos se han convertido en métodos 
establecidos en las neurociencias, las ciencias médicas, fisiológicas 
y biofísicas. En este artículo se presentan dos simuladores diseñados 
y desarrollados para el estudio de las propiedades pasivas del axón 
y del árbol dendrítico: HR2 y Rall1. El HR2 es un programa interactivo 
que reproduce los experimentos clásicos de Hodgkin y Rushton (1946)2 
para determinar las constantes eléctricas de la fibra nerviosa de un 
crustáceo. Rall1 es un programa interactivo para estudiar el modelo 
de Rall, el cual reduce el árbol dendrítico a un cilindro equivalente 
eléctricamente2. Con estos simuladores, los estudiantes podrán 
determinar la constante de tiempo y la longitud electrotónica en 
axones y dendritas. Los simuladores son una herramienta poderosa 
para explorar y analizar la complejidad de las propiedades pasivas 
en el procesamiento de la información neural.

Palabras clave: Neurociencias, simuladores electrofisiológicos, propie-
dades pasivas, simulación educativa.
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INTRODUCTION

The passive spread of electrical potential along 
the cell membrane underlies all types of electrical 
signaling in the neuron. It is thus the foundation for 
understanding the interactive substrate whereby the 
neuron can generate, receive, integrate, encode, 
and send signals.

Electrotonic spread shares properties with 
electrical transmission through electrical cables. 
The mathematical study of cable transmission 
has expressed these properties on a quantitative 
basis. The cable equation is the basic equation 
governing the dynamics of the membrane po-
tential in thin and elongated neuronal structures, 
such as axon and dendrites. The study of partial 
differential equations describing the evolution of 
the electrical potential in these structures gave 
rise to a body of theoretical knowledge termed 
cable theory3.

In this work the nomenclature used was that 
proposed by Rall. Table 1 shows the symbols used 
by Hodgkin and Rushton1 and their equivalence in 
the Rall model2.

A. Axon model

Cable theory was first applied successfully to 
nerve fibers by Hodgkin and Rushton. They used 
extracellular electrodes to measure the spread 
of applied current along lobster axons. Later, 
intracellular electrodes were used in a number 
of nerve and muscle fibers for similar studies. In 
Hodgkin and Rushton’s work, the electrical mea-
surements were made by applying rectangular 
pulses of current and recording the potential re-
sponse1. Application of classical cable theory to 

neuronal processes assumes that the structures, 
in this case axons, are infinitely long4-6. Davis and 
Lorente de No (1947)7 proposed a similar math-
ematical model. A mathematical evaluation of 
the core conductor model has been done by 
Clark and Plonsey8, Kootsey9, and Arthurs and Ar-
thurs10. The application of cable theory to passive 
spatially extended dendrites started in the late 
1950s and blossomed in the 1960s and 1970s, 
primarily due to the work of Rall11,12.

The Hodgkin and Rushton’s article1 was very 
important for understanding the passive properties 
of the axon6,13. Theoretical equations which repro-
duce the response of the nerve fiber to a stimulus 
current were derived from their results. Accord-
ing to Hodgkin and Rushton1 the most important 
reason for conducting an analysis of the passive 
properties of a nerve fiber is that such analysis 
is necessary for an understanding of the more 
complicated electrical changes which make up 
the nervous impulse itself6. The passive behavior 
of the fiber can be determined by four electrical 
constants: (1) The electrical resistance of the fluid 
outside the nerve fiber, (2) The electrical resistance 
of the axoplasm, (3) The electrical capacity of 
the surface membrane, and (4) the electrical 
resistance of the surface membrane1,4,7,8. The 
external resistance can be calculated from the 
volume and conductivity of the fluid bathing the 
nerve1. The cell interior appears to have a resistivity 
two or three times as great as that of the external 
fluid (50 cm, Rall2) and the surface membrane 
appears to have a capacity of about 1 F/cm2 
(0.7-1.3 F/cm2, Genter et al4). Due to the inher-
ent difficulties to measure the resistance of the 
membrane, Hodgkin and Rushton have proposed 
to combine their experimental data with a math-

Table 1. Symbols.

Hodgkin and Rushton’s Work   Rall’s Model

Parameter Definition Parameter Definition Unit

R2 Specific resistivity of the axoplasm Ri Specific intracellular resistivity cm
R4 Resistance per area of the surface membrane Rm Specific membrane resistivity cm2

CM Capacity per area of the surface membrane Cm Specific membrane capacitance F/cm2

r1 Resistance per length of the external fluid re External resistance /cm
r2 Resistance per length of the axis cylinder ri Axial resistance /cm
r4 Resistance per length of the surface membrane  rm Membrane resistance cm
 in the axon  
c Capacity per length of the surface  cm Membrane capacitance F/cm
 membrane in the axon
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ematical model (equation 12) in order to get such 
measurement1.

In order to evaluate the electrical constants, 
Hodgkin and Rushton1 used the following methods: 
(1) The extent of the spread of potential in the ex-
trapolar region (the extrapolar region is the axonal 
membrane outside of the stimulation electrodes; 
the electrotonic potential is measured here at dif-
ferent distances from the current source), (2) The 
rate of rise in potential in the extrapolar region, (3) 
The ratio of the applied current to the voltage re-
corded between cathode or anode and a distant 
extrapolar point, and (4) The voltage gradient at 
the midway point between two distant electrodes 
(interpolar region).

The extrapolar region method is used to deter-
mine the time constant (m), and the space con-
stant (). The interpolar region method allows the 
measurement of input resistance equivalent (y) and 
the calculation of the parallel resistance of the axis 
cylinder and external fluid (m), the specific resistivity 
of the axoplasm (Ri), and the specific resistance of 
the membrane (Rm).

Hodgkin and Rushton derived all the equations 
necessary for the adequate reproduction of all of 
their experiments1,6.

Cable theory is useful in coordinating a wide 
range of experiments. The transient solution of 
the cable equation for an infinite cable at X = 
0 above is extremely useful because it describes 
the charging curve at the site of current injection, 
the usual site of potential measurement13. It would 
also be useful, however, to know what the transient 
change in membrane potential would be at dif-
ferent sites from that of current injection1,13. The 
current flows longitudinally along the axon, and 
as it moves away from the electrode, some of it 
is lost on account of ion movements through the 
membrane1,6,13.

The equivalent circuit is a series of resistive 
elements, rm and ri, connected in a chain.1,6,7,13. 
The membrane resistance, rm, represents the 
resistance across the cyl inder wall; the lon-
gitudinal resistance, r i, represent the internal 
resistance along the axoplasm (Figure 1A). The 
distance the potential spreads along the axon 
depends on the resistance of the cell mem-
brane relative to that of the axoplasm1,6,7,13,15. 
Because nerves in a recording chamber are 
normally bathed in a large volume of fluid, the 
extracellular longitudinal resistance along the 
cylinders is represented as zero. In Hodgkin and 
Rushton, rm/ri > 0.

B. Dendritic tree model

Shapes of dendrites are not only complex, but also 
highly variable from one neuronal type to another. 
This diverse shape of dendritic trees contributes to 
differential processing of inputs by different classes 
of neurons. Rall’s theoretical model enables the 
simplification of the complex structure of a dendritic 
tree. The principal objective was to harness the 
equations derived from experiments in the axon. 
One of Rall’s major contributions was to show how 
a complicated tree structure such as this could be 
reduced to a single equivalent cable. His aim was 
to provide a method for simplifying the complex 
geometry of a branching dendritic tree, while pre-
serving its electrical properties. The method he used 
was a recursive calculation for the steady-state input 
conductance of a finite length of a cylindrical den-
drite which terminates with further branching. Each 
dendrite length was terminated by a conductance 
which constituted the input conductance of the 
subsequent branching. Repeated substitutions for 
the input conductance at each branch point led to 
a compact expression for the input conductance of 
a dendritic trunk. Rall makes the important observa-
tion that the diameter of dendritic branches obey 
the 3/2 power rule. Then, for passive dendritic trees 
fulfilling certain symmetry conditions, the reduction 
to an equivalent cable can be justified on theoreti-
cal grounds12,16,17.

The development of a mathematical model of 
dendritic neurons began due to the need to com-
bine three different strands of knowledge into a 
coherent theory: (1) The anatomical concept of the 
neuron, together with the anatomical understanding 
that extensive dendritic branching is characteristic 
of many important neuron types, (2) The theoreti-
cal development of the nerve membrane models, 
(3) The detailed body of quantitative electrophysi-
ological information that has been obtained from 
individual neurons by means of intracellular and 
extracellular microelectrodes15.

In dendritic neurons, the effective Rm can vary, 
from values of less than 1,000 cm2 to more than 
1,000,000 cm2 in different neurons18-23. Tradition-
ally, the value of Ri has been believed to be in the 
range of approximately 50 – 100 cm based on 
muscle cells and the squid axon. In mammalian 
neurons, estimations now tend toward a value of 
200 cm18,22-26.

The Hodgkin and Rushton’s model and that at Rall 
may be used as long as certain assumptions are 
taken into account. First of all, the geometric and 
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passive electric properties of an axon and neuron 
with dendritic trees must be idealized to produce a 
formal theoretical model that is suitable for math-
ematical treatment18. The necessary assumptions 
and definitions for the two simulators are listed in 
Table 2.

DEVELOPMENT OF THE SIMULATOR

Microsoft Visual Basic® version 5.0 for IBM PC or 
compatible was used to create the simulator. The 
minimal requirements for the software are: Pentium 
III, 350 MHz or higher, Windows 98 or higher, Super-
VGA Monitor with a resolution of 1,024 x 768 pixels 
or higher, and at least 7 MB of free space on the 
hard drive.

The development of the simulators is based 
on cable theory. In the simulators x is distance 
along the axon in cm, t is time in seconds and 
i1 is the current in amperes flowing through the 
external fluid.

The cable equation is:

                     (1)

Where:

       
(2)

, has distance dimensions and is known as the 
space constant. It determines the tendency for 
current to flow along the cable. The space con-
stant depends not only on the internal membrane 
resistance, but also on the diameter of the axon.

m is the membrane time constant.

In Hodgkin and Rushton’s work:

                          (3)

Where:
r1 is the resistance per length of the external fluid
r2 is the resistance per length of the axis cylinder
r4 is the resistance per length of the surface mem-
brane in the axon

The cable equation can be put into its most gen-
eral and useful form by normalizing the length con-
stant (space constant) and the time constant. Where 
X = x/ and T = t/m, the equation becomes3,6,9:

Table 2. Theoretical assumptions.

Hodgkin and Rushton’s work Rall’s model

1. The axon has an uniform cable-like structure with a  1. A dendritic tree is assumed to consist of a cylindrical
 conducting core, an external conducting path and   trunk and cylindrical branch components
 a surface membrane with resistance and capacity
2. The axon is sufficiently thin and the membrane  2. The electric properties of the membrane are assumed
 resistance sufficiently high for the flow of current in   to be uniform over the entire soma-dendritic surface
 core and interstitial fluid to be strictly parallel
3. The axoplasm and external fluid behave as pure  3. The electric potential is assumed to be constant over
 ohmic resistances  the entire external surface of the neuron
4. The membrane resistance is constant when the  4.  The electric potential is assumed to be constant over
 current density through the membrane is small  the internal surface of the soma membrane
5. The membrane capacity behaves like a pure  5.  The internal potential and current are assumed to be
 dielectric with no loss  continuous at all dendritic branch points and at the
   soma-dendritic junction
  6. The electric current inside any cylindrical component 
   is assumed to flow axially through an ohmic resistance 
   which is inversely proportional to the cross section area
  7.  The electric current across the membrane is assumed 
   to be normal to the membrane surface
  8.  A membrane electromotive force, E, is assumed to be
   in series with the membrane resistance, and constant
   for all the membrane
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             (4)

Where X and T are dimensionless

A. HR2 simulator

The solution of the cable equation for infinite cable 
for a step current at X = 0 is1,6:

 (5)

This equation corresponds to boundary conditions 
of infinite cable.
Where erfc(x) = complementary error function and 
erf(x) = error function1,6:

 (6)

Where erf(0) = 0, erf() = 1, and erf(-x) = -erf(x)
The steady-state solution (T  is:

 2
                  (7)

The measurement of «y» ()

The constant y (R - input equivalent) is given by the 
rate of the steady voltage at the cathode to the 
applied current, hence:

                      (8)

Where
a is the recorded voltage (x = 0).
b is the stimulus voltage.
61,700  is the resistance of the external electrode.

The length constant () is the reciprocal of the rate 
of decay voltage along the cable distance:

                        (9)

The measurement of «m» (/cm):

m has been defined as the parallel resistance 
of core and external fluid. It was determined by 
measuring the voltage gradient midway between 
two distant electrodes and dividing the gradi-
ent by the current through the nerve (interpolar 
region):

                      (10)

Ri is the specific resistivity of the axoplasm:

 
                (11)

Where:
 is the cylinder ’s radius in cm.

Rm is the specific resistance of the membrane:

           (12)

The program follows Hodgkin and Rushton’s experi-
mental procedure:

• The user inputs the values (in this version this step 
can be omitted as the values are randomly gen-
erated by the program).

• The extrapolar region is simulated: spread of 
potential along a lobster axon, recorded with a 
surface electrode. In this simulation m at X = 0 
is calculated.

• The plot voltage -vs- distance is showed and  is 
calculated.

• The intrapolar region is simulated: This procedure 
measures the voltage gradient in the region mid-
way between two distant electrodes. The program 
calculates the input resistance equivalent (y), m, 
Rm and Ri.

B. Rall1 simulator

In Rall’s equivalent cylinder morphological to elec-
trical transformation, neuronal arborizations are 
reduced to single unbranched core conductors. The 
conventional assumption that such an «equivalent» 
reconstructs the electrical properties of the dendritic 
tree is shown in the Table 2.

The model was based on a set of carefully cho-
sen symmetries that simultaneously abstracted the 
neuron and simplified the mathematics (Figure 1B).

A B
ri ri ri ri

cm cm cm

rm rm rm

re re re re

Figure 1. (A) Axon electric model. The axoplasm is repre-
sented with a series of parallel resistances (ri), the membrane 
is formed by an RC parallel circuit (rm and cm) and the ex-
ternal medium is represented with a serial resistances (re). 
(B) Reduction of a dendritic tree to an equivalent cylinder.
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The simulator Rall1 uses the general solution of 
the cable equation (equation 4) in terms of hyper-
bolic function. The cable equivalent has different 
end terminations, each of which has a different 
boundary condition.

The steady-state solution of the cable equation 
for a finite-length cable is13,18,24:

     
 (13)

BL is the boundary condition for different end ter-
minations:

 
                      (14)

Where:
GL is the conductance of the terminal membrane.
G is the conductance of semi-infinite cable.

For the two types of terminations, GL will be zero 
for the sealed end and infinite for the open end. 
We will consider three cases:

Infinite cable extension: BL = 1 (that is GL = G)

                  (15)

Cable with sealed-end condition: BL = 0 (GL<<G)

(L )cosh
(L)cosh

             (16)

Cable with open-end condition: BL = ∞ (GL >> G)

   
          (17)

The length of cylinder in terms of  (dimensionless 
electrotonic length) is:

                            (18)

Dendritic to soma conductance ratio.
The rate of combined dendritic input conductance 
to the soma membrane conductance is:

                           (19)

Where:
GD is the dendritic input conductance.
GS is the soma membrane conductance.

RESULTS

Program installation

The simulator is installed through the «setup» file, 
which guides the user step by step to correctly install 
the software. By using the program HR2, the students 
may select a variety of experimental conditions. 
The simulated experimental setup consists of an 
oscilloscope, shown at the right side of the windows 
interface, and the nerve preparation shown to the 
left (Figures 2 A and B).

A. HR2 simulator: Interface and use

A Hodgkin and Rushton experiment is carried out 
as follows:

Input windows interface: From top to bottom, 
the interface shows the values of the fiber diameter 
(60 to 87 m), external resistance per unit length 
(ri) (150 to 250 /cm), internal resistance per unit 
length (re) (130 to 250 cm), membrane resistance 
per unit length (rm) (350 to 1,500 cm), membrane 
capacitance (cm) (400 to 3,240 nF/cm) and stimulus 
strength (2 to 9 A)1,6.

First step: The user selects the corresponding val-
ues for the simulation. A scrollbar is used to introduce 
each of the values.

Recording windows inter face: The program 
HR2 version 2.0 has two options; extracellular 
or intracellular recording. This interface shows, 
on the left hand side, the schematic prepara-
tion of the axon. The scrollbar is used to move 
the recording electrode along the nerve. The 
button «STIMULUS» is used to apply the stimulus 
current. The right side shows the oscilloscope. 
At the bottom left there are 4 buttons: «LENGTH 
CONSTANT» (which sends the user to the interface 
to calculate ), «R-input EQUIVALENT (y)» (which 
sends the user to the interface to calculate (y)), 
«INTERPOLAR REGION» and «INTRACELLULAR RE-
CORD» (which sends the user to the recording 
corresponding windows). At the bottom right, 
there are two buttons: «reset» (clear the oscil-
loscope), and «TIME CONSTANT» (calculate the 
m at X = 0 m) (Figure 2A).

In this step, the student records along a lobster 
axon. The m is calculated at X = 0 (Figure 2A). A 
rectangular current pulse is applied at 0 mm, pro-
ducing an electrotonic potential. With increasing 
distance from the site of current injection, the rise 
time of the potential change is slowed and the 
plateau attenuated (Figure 3A)1. At any time, the 
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A B

C D

E F

Figure 2. Interface windows appearing during simulated experiment consistent with the results of Hodgkin and Rushton re-
search (1946). (A and B) setup for the extracellular and intracellular recording of extrapolar potential respectively. (C) setup 
to measure the equivalent input resistance. (D) setup for extrapolar recording. (E) Voltage versus distance plot to calculate 
. (F) Resistance versus obtained distance plot using interpolar registers calculating m, Ri and Rm.

A B

Figure 3. (A) Recording of ex-
trapolar potential, observing 
decreasing voltage values as 
the recording electrode goes 
away from the stimulus point. 
(B) Voltage gradient obtained 
from the interpolar region. 
These registers correspond to 
the simulation of example 1.
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user can change parameter values and observe 
the consequences.

Next step, the user presses the button «LENGTH 
CONSTANT». The plot windows interface shows two 
boxes for the plotting results (Figure 2E). The bottom 
screen contains two buttons: «GO» and «R-input 
EQUIVALENT (y)». The button «GO» is used to show the 
steady state membrane potential as a function of 
distance in the axon in response to current injection 
at one end (X = 0 m). The  is the reciprocal of the 
rate of voltage decay along the cable distance. 
The user obtains the  values.

The R-input EQUIVALENT interface shows the 
schematic preparation of the measurement of the 
voltage in the stimulus electrode. On the right side, 
there are three boxes showing the recorder voltage 
(X = 0 m), stimulus voltage and input resistance 
equivalent respectively. In this step, the user presses 
the button «STIMULUS» to calculate these values 
(Figure 2C). Next step, the user presses the button 
«INTERPOLAR REGION».

The interpolar region interface presents, on the 
left side, the schematic preparation and in the right 
side the oscilloscope (Figure 2D). These windows 
presents the button «Reset» to clean the oscillo-
scope and «GRAPHIC» to go to the corresponding 
plot interface. In this step, constant «m» can be 
obtained from a measurement of the voltage gradi-
ent in the interpolar region at a large distance from 
either stimulus electrode (Figure 3B). The user presses 
the button «Stimulus» and moves the scrollbar to 
simulate the movement of the electrode register at 
different points along the length of the axon.

There are three boxes in the window: The first is 
the distance in which the register was made, the 
second is the maximum voltage reached and the 
third is the resistance obtained with experimental 
data.

The «GRAPHIC» button takes us to the interface 
in which appears a chart for calculating resistance 
in the experiment versus the distance in which the 
register was made (Figure 2F). The user interface 
located from top to bottom on the right side, has 
three boxes showing the m, Ri and Rm respectively. 
On the bottom right side there are two buttons: 
«EXTRAPOLED REGION» and «GENERAL RESULT».

At this stage, if we press the «GO» button, it cre-
ates a chart showing a linear process. The «m» 
parameter is the slope (Figure 2F). From , «y» and 
«m» parameters the corresponding Ri y Rm values 
(equations 11 and 12) can be calculated.

Finally, the final results are made to appear by 
pressing the «GENERAL RESULT» button. From top 

to bottom, the resistivity of the axoplasm (Ri), spe-
cific membrane resistance (Rm), the diameter of 
the axon, «y» parameter, «m» parameter, length 
constant  and membrane time constant m are 
shown.

As an example: (1) enter the following values: 
diameter = 65 m, re = 160 and ri = 180 (/cm), 
rm = 850 cm, cm = 1,000 nF/cm and stimulus = 4 
A. The Figure 3A shows the registered voltage and 
how it decreases as the register electrode moves 
away from the stimulus point.

The results of this experiment are Ri = 59.72 
cm, Rm = 1,735 cm2, diameter 65 m, input 
resistance = 59.52 k,  = 1.58 mm and m = 
1.73 ms. These values are consistent with those 
obtained by Hodgkin and Rushton in Table 2 of 
their paper1.

Another example: (2) go directly to the experi-
ment. This condition emulates actual conditions 
because usually the researcher is unaware of the 
axon resistance and capacitance values. The goal 
is to calculate them from the experimental process. 
In this case the results were: Ri = 73.12 cm, Rm = 
2,089 cm2, diameter 70 m, input resistance = 
65.2 k,  = 1.62 mm and m = 2.5 ms. Again it 
can be observed that these values are consistent 
with those obtained by Hodgkin and Rushton in their 
experiment1.

Each user interface has a menu in the upper 
left corner of the screen in which the user can ac-
cess a help box to display a definition of each of 
the concepts involved in the experiment, the cor-
responding equations and their equivalence with 
the actual nomenclature (Table 1).

B. Rall1 simulator: Interface and use

This program simulates voltage response to a stimu-
lus of subumbral current in an isopotential cell, in 
dendrites and neurons with dendrites13,18,24. Use of 
this program allows the student to become familiar 
with subjects which, because of the mathematics 
they entail, are not generally approached and are 
rarely understood. The synaptic integration in the 
neurons depends to a certain extent on the passive 
properties. Synaptic integration is fundamental to 
neural communication and thus fundamental to 
the function of the nervous system.

The simulator is installed through the «setup» file 
which guides the user step by step to correctly install 
the software. A file named Rall1.exe is opened to 
execute the program. The Start option of Microsoft 
Windows gives the option to open a window with 
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the main menu which then gives the option of 
selecting from three modules: (1) isopotential cell, 
(2)   equivalent cylinder models, (3) soma model + 
equivalent cylinder.

The isopotential cell module shows the case 
of ideal neurons without dendrites (as could be 
the case with some ganglionar neurons or bipolar 
cells). This case considers spherical cells in which 
the membrane potential is uniform at all points of 
the sphere. Rm is constant and independent from 
voltage. The electrical model in these cells is an RC 
circuit in parallel.

1B. «Isopotential Cell» module: User interface

Figure 4A shows the user interface for this module. 
On the upper left hand corner there are two boxes 
in which to input data for membrane potential and 
applied current amplitude (nA). Below, there is a 
diagram of the cell in which arrows indicate how cur-
rent is distributed in a uniform way in every direction 
within the cell. The right half of the screen shows two 
boxes that represent the oscilloscope. The current 

pulses of the stimulus are displayed in the upper box 
and the charge curves that correspond to these 
stimuli are shown in the lower box. Underneath this 
box there are two buttons: «Start» which executes 
the simulation and «Erase» which clears the boxes. 
Bellow that there is the button «Back» which leads 
to the main menu (Figure 4D) and «Exit» to quit the 
program. A help menu appears in the upper part 
of the window.

Use: the student inputs the value of the mem-
brane potential and the amplitude of the stimu-
lus. For instance: a value of -80 mv was given and 
the stimulus amplitude values as follows: 2, -2, 3, 
-3, 4, -4 (nA). The curves of positive and negative 
charges are shown in relation to the polarity of 
the stimulus pulse. The simulation corresponds to 
Figure 4.5 in Johnston and Wu13. The appropri-
ate moment to calculate the time constant of 
the cell (m), deduce the differential equation 
in relation to the electric model and to solve 
the equation is considered. In the «Help» menu 
one can find the corresponding mathematical 
information11-13.

Figure 4. Interface user win-
dows in the Rall1 simulator. 
(A) Simulating isopotential cell 
passive properties. (B) Simu-
lation of passive properties 
on dendrites transformed to 
equivalent cylinders with Rall 
mathematical model with dif-
ferent boundary conditions. 
The upper trace corresponds 
to a sealed short cylinder, the 
intermediate one to an infinite 
cylinder, and the lower one 
corresponds to a short and 
open cylinder. (C) Membrane 
potential t ransients at the 
neuron soma and origins of 
dendrites, when constant cur-
rent is applied across the soma 
membrane. (D) At the left side 
of the screen there is a help 
box showing a dominance 
dendrit ic scheme with the 
corresponding values; at the 
right side, the window menu for 
selecting simulator.

A B

C D
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2B. «Equivalent cylinder model» module: User 
interface

Figure 4B shows the interface window. The left half 
presents a diagram with circles that represent the 
channels of the membrane (these are not the usual 
channels which depend on voltage). A sliding bar 
appears next to it that allows us modify the electron-
ic longitude value (L) with said values being shown 
in a box underneath. Further below there are three 
equivalent cylinders: the first is long and considered 
infinite, the next is short with open ends and the last 
is short with sealed ends. A corresponding button is 
found next to each cylinder to run the simulation in 
each case. On the right side of the window, a box 
shows the voltage decay in relation to distance. 
Below there are two buttons: «Erase» and «Back».

Use: As was the case of the first interface, the 
student can move the sliding bar to input a value 
of electronic longitude (L). In the «Help» menu one 
can find a definition of L18. This is useful to help the 
student understand the difference between physical 
longitude and electronic longitude16,19,22,23. Later one 
can activate the button for each of the equivalent 
cylinder conditions and the corresponding voltage 
decay is shown. As an example: an electronic lon-
gitude of 1.7 was inputted and simulations for each 
condition were run. The upper stroke represents the 
short cylinder with sealed ends, the middle stroke 
represents the voltage decay in the long infinite 
cylinder and the lower stroke denotes the short open 
ended cylinder. Figure 4B shows the distributions of 
electronic potential along unbranched cylinders for 
different terminal boundary conditions and different 
lengths. It can be observed that the decay volt-
age in a short open cylinder reaches zero, and the 
infinite cylinder also tends to zero but over a longer 
distance, while with the sealed cylinder the voltage 
remains high. This simulation is similar to Figure 4.15 
in Johnston y Wu13 and Figure 3 in Rall16.

3B. «Soma model + equivalent cylinder» 
module: User interface

This module allows for the use of  as proposed 
by Rall, to determine the predominance of the 
dendritic tree in the neuron. To a higher value of 
 the neuron presents a more abundant dendritic 
tree. A value of zero corresponds to an isopoten-
tial neuron and an infinite value corresponds to 
a cylinder.

Figure 4C shows the user interface. On the left 
side of the window one can find the oscilloscope, 

where the charge curves generated in response 
to a current stimulus are shown25. On the right side, 
there are three diagrams representing the simula-
tion conditions. The lower diagram corresponds 
to an isopotential cell ( = 0), while the diagram 
above corresponds to a cylinder (the soma electri-
cal characteristics are such that it can be merged 
to the dendritic tree and be considered whole as 
a cylinder ( = infinite))18,19. The diagram above the 
previous corresponds to a neuron with dendrites, in 
which the value of  can be adjusted and thus the 
curve charge of neurons with different dendritic 
abundance can be simulated. An illustration show-
ing different values of  is shown in Figure 4D, on 
the left side13,18.

DISCUSSION

Physiology, Biophysics or Neuroscience college 
courses have little to do with neuronal passive 
properties. Text books such as The physiology of 
excitable cells by Aidley26; Biofísica y fisiología 
celular by Latorre et al27; From neuron to brain by 
Nicholls et al15 and Principles of neural science by 
Kandel et al28 touch on this theme no more than 
summarily.

There is no specific simulation software dealing 
with the passive properties of the axon and the den-
dritic tree through analytical solutions using cable 
theory that can be used as a teaching tool.

This simulator reproduces Hodgkin and Rushton’s 
experiments virtually using cable equations and their 
analytical solutions. Up to date, there is no other 
simulator that reproduces these experiments. The 
cable model has been widely used in order to deter-
mine the passive properties of several neurons and 
with enough symmetry to reduce it to an electrically 
equivalent cylinder19-21,29. «The exponential peeling 
method» proposed by Rall18 allows us calculate the 
passive parameters from experimental data using 
an analytical treatment from Rall’s cable theory18.

While Rall’s model is based on the assumption of 
an homogeneous Rm, other models have been de-
veloped considering a heterogeneous membrane 
(with the somatic resistance lower than the dendritic 
resistance) based on an equivalent cylinder29-31.

The strength of the equivalent cylinder concept 
has been proved in Ohme and Schierwagen’s32 
work, where they show several dendritic trees re-
duced to different equivalent cylinders with added 
active properties. In those cases where Rall ’s 
branching rule no longer functions, it can be re-
duced to a non uniform diameter cable.
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Rall’s paper33 is one of the most significant land-
marks in the modern era of computational neurosci-
ence. Rall introduced the compartmental modeling 
method, which, in principle, allows the computation 
of voltage and current spread in no idealized, and 
hence, biologically realistic trees, with any specified 
voltage and with non-linear active properties33.

Programs such as Genesis or Neuron work ef-
fectively to simulate specific neurons and provide 
corresponding anatomical data and electrophysi-
ologic studies34.  These programs have interactive 
computer tutorials that include concepts in neuro-
science and neuronal modeling. For example the 
developers of GENESIS have published «The book 
of GENESIS», including an outline of cable theory 
aimed at the development of passive compart-
mental models. However, they omit Rall’s equivalent 
cylinder theory and Hodgkin and Rushton’s1 classic 
experiment simulations. From the point of view of 
the authors of this article, these experiments are 
fundamental to understanding cable theory prin-
ciples. The simulations of virtual experiments, such 
as the interactive programs described in this paper, 
introduce students to this topic.

We recommend students to conduct the simula-
tions in the classroom, and to explain and present 
the corresponding mathematical equations in every 
case as part of an intuitive approach. Additionally, 
the compartmental models from GENESIS34 or Neu-
ron35 can be used to complement the topic.

It is important to mention that concepts involved 
in compartmental models originate in cable theory. 
Each compartment is represented by a differential 
equation. In general, cable theory and compart-
mental modeling provide a foundation for pre-
dicting the propagation of electrical signals in the 
dendrites and axons of neurons36,37.

For the HR2 simulator we recommend the user 
to follow Hodgkin and Rushton’s experiment stages. 
It is desirable but not necessary to read these 
researchers’ papers and simulate every part they 
describe.

Similarly, for the Rall1 simulator it is recommend-
ed, that the simulations begin in the order in which 
they appear in the main menu. The simulator design 
has been developed as a powerful didactic tool to 
be used alongside relevant and appropriate texts, 
such as Chapter 4 from «Foundations of cellular 
neurophysiology» by Johnston and Wu13.

These simulators have been used for the last 
three years in the Biophysics module in the Biology 
School at the Benemérita Universidad Autónoma de 
Puebla (BUAP), and have been constantly improved 

on based on the (unpublished) results obtained 
from a survey measuring student satisfaction. In 
general, feedback has been sought from students 
in terms of the usefulness of the software in two 
dimensions: (1) usability of the simulator, and (2) 
its facilitation of learning. In both cases, these ele-
ments are evaluated through closed answers (very 
adequate, adequate, slightly adequate and in no 
way adequate) and (very good, good, average, 
unsatisfactory) respectively.

Some of the applied questions are:

Did you learn how to obtain space constant?
Did you learn how to obtain time constant?
Can you predict what will happen to time con-

stant when rm changes?
Did you identify the effect that produces the 

changes in the variables rm, ri, re y Cm, in the passive 
properties of the axon?

Finally, the program explores the students’ per-
ception of the utility of mathematical and compu-
tational tools in their professional formation.

The students consider that simulators are easy 
to use. All students changed their perception of 
neuroscience and discovered a new way of apply-
ing mathematics. The 96.5% now accept as valid 
the use of mathematics in their profession and are 
willing to learn more about this application, 30% 
of students indicated that the discipline they were 
inclined to study had changed from another disci-
pline to neurosciences, and 3.5% of students had 
not adapted to the use of simulators.

In conclusion, these results show that using simu-
lators as a didactic tool in the teaching of these 
apparently difficult topics may change student 
perception and stimulate their interest to study and 
use simulators.
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