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to Neuroimaging
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ABSTRACT 
The task of determining for which elements of a random field (e.g., pixels in an image) a certain null hypothesis may 
be rejected is a relevant problem in several scientific areas. In the current contribution, we introduce a new method 
for performing this task, the regularized hypothesis testing (RHT) method, focusing on its use in neuroimaging re-
search. RHT is based on the formulation of the hypothesis testing task as a Bayesian estimation problem, with the 
previous application of a Markovian random field. The latter allows for the incorporation of local spatial informa-
tion and considers different noise models, including spatially correlated noise. In tests on synthetic data showing 
regular activation levels on uncorrelated noise fields, RHT furnished a true positive rate (TPR) of 0.97, overcoming 
the state-of-the-art morphology-based hypothesis testing (MBHT) method and the traditional family-wise error 
rate (FWER) method, which afforded 0.93 and 0.58, respectively. For fields with highly correlated noise, the TPR 
provided by RHT was 0.65, and by MBHT and FWER was 0.35 and 0.29, respectively. For tests utilizing real func-
tional magnetic resonance imaging (fMRI) data, RHT managed to locate the activation regions when 60% of the 
original signal were removed, while MBHT located only one region and FWER located none.

KEYWORDS: Regularized hypothesis test; Markovian random fields; Bayesian estimation; functional Magnetic resonance 
imaging.
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RESUMEN
En varias áreas científicas aparece el problema de determinar los elementos de un campo aleatorio (por ejemplo, 
píxeles en una imagen) en los que se puede rechazar una cierta hipótesis nula. En este artículo presentamos un nue-
vo método para realizar esta tarea, centrado en aplicaciones para investigación de neuroimagen. Nuestra propuesta 
se basa en la formulación de pruebas de hipótesis como un problema de estimación Bayesiana, usando como a priori 
un campo aleatorio Markoviano, que permite incorporar información espacial local y considera diferentes modelos 
de ruido, incluido el ruido correlacionado espacialmente. Para pruebas en datos sintéticos con niveles de activación 
regulares sobre campos de ruido no correlacionado, nuestro método obtiene una tasa de verdaderos positivos (TPR) 
de 0.97, superando al método del estado del arte MBHT y al método de control FWER que obtienen 0.93 y 0.58 res-
pectivamente; para campos con ruido altamente correlacionado, nuestro método obtiene un TPR de 0.65, mientras 
que MBHT y FWER obtienen 0.35 y 0.29 respectivamente. Para pruebas con datos reales de fMRI, nuestro método 
localiza las regiones de activación cuando removemos 60% de la señal original, mientras que MBHT no localiza re-
gión alguna y FWER localiza una de las dos regiones. 

PALABRAS CLAVE: Prueba de hipótesis regularizada; campo aleatorio Markoviano; estimación Bayesiana; Imágenes de 
Resonancia Magnética Funcional.
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INTRODUCTION
In areas of scientific research where imaging is 

involved (e.g., neuroimaging, remote sensing, etc.), it 
is often necessary to test statistical hypotheses at each 
element of a 2 or 3-dimensional field of sites (pixels or 
voxels). The purpose is to determine the set of sites at 
which the response to a given experiment may be dif-
ferent from baseline, or whether it is significantly cor-
related with another parameter. 

For instance, researchers in the area of neuroscience 
typically conduct studies to identify the area of the brain 
responsible for a certain cognitive task. The experi-
ments are composed of stimulus and rest periods applied 
to a single subject or several people [1] [2] [3] [4] [5], applying 
a functional imaging approach such as positron emis-
sion tomography (PET) or functional magnetic reso-
nance imaging (fMRI). Subsequently, the regions of 
voxels with a significant degree of activation have to be 
detected by performing simultaneous hypothesis tests 
over 2 or 3-dimensional measurements. 

Because hundreds of thousands of comparisons are 
made at the same time, the well-known problem of 
multiple comparisons appears [6] [7]. The researcher is 
thus obliged to seek a solution to the resulting increase 
in the percentage of false positives (type I errors). A 
popular family of approaches to deal with this problem 
are the so-called pointwise (PW) methods, which uti-
lize some type of thresholding technique to control 
the family-wise error rate (FWER) [6] [8]. Although they 
present a simple and easy to interpret solution, there is 
a high rate of type I errors. 

Some authors address the problem through the 
Gaussian random fields (GRF) theory [9] [10], under the 
assumption that the spatial correlation of the data is 
known or can be estimated. Since this is not true in 
practice [11], a smoothing filter is applied to the raw 
images to ensure that these assumptions are met. Such 
a pre-processing process causes a loss of spatial resolu-

tion [5]. On the other hand, threshold-free methodolo-
gies [12] employ erosion and dilatation morphological 
operators with a set of structuring elements of various 
sizes to detect regions exhibiting moderate activation 
levels and wide spatial size. However, their results are 
subject to the form of the structuring elements, which 
is determined arbitrarily.

In the current contribution, we propose a new 
method, denominated the regularized hypothesis 
testing (RHT) method. It is based on the formulation 
of the hypothesis testing task as a Bayesian estimation 
problem using a Markovian random field (MRF) to 
incorporate local spatial information. Firstly, mention 
is made of the state-of-the-art methods available to 
solve the problem of hypothesis testing in 2 and 
3-dimensional fields. Thereafter, RHT is explained 
along with related theoretical considerations. The 
problem of parameter selection is addressed by pro-
posing two algorithms for automatic calibration. 
Having laid out the new method, it is validated by 
experiments with simulated and real data. Finally, the 
results are discussed and conclusions are drawn.

Theoretical framework
The problem of testing statistical hypotheses at each 

element of a 2 or 3-dimensional field can be conceived 
as the following general problem:

 Given a set 𝓛 of sites, there is a statistic T(u) defined 
for each site u∈𝓛 for which one wishes to test a null 
hypothesis (H0). According to this hypothesis, all ele-
ments T(u) are furnished by the distribution P0 (T) (the 
null distribution). H0 is assumed to be of the form:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(1)

 where H0u is a marginal null hypothesis about the 
probability distribution of the measurements at site u. 
At H0u, consequently, T(u) is generated by P0. In the 
active region, 𝓐 is defined as the set of sites u where 
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H0u does not hold, thus affirming the alternative 
hypothesis H1u. The problem then is to find an esti-
mate 𝓐 for te set 𝓐 (note: 𝓐 and 𝓐 may be empty).

Once a method is selected, its performance must be 
evaluated with standard tools. Some very common 
tools that will be used presently are described.

1. The false positive rate (FPR) is defined by:
𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(2)

where 𝓐c is the complement of the active region 𝓐, |⋅| 
denotes the cardinality of a set and E[∙] refers to the 
expected value of a random variable. 

It is also possible to define FPR for elements that are 
not adjacent to the boundary of the active region: 

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(3)

where the r-dilation Dr of 𝓐 is defined as:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(4)

This measure is defined for two reasons. Firstly, the 
boundary of the active region is usually not well local-
ized, since the activation level often decreases slowly 
as one moves away from 𝓐. Secondly, the methods 
that consider the neighborhood of each element for 
estimating 𝓐 likely indicated an increased number of 
false positives nearby to the boundary of the active 
region If most false positives are of this kind, they 
should have less impact on the measured performance 
than the false positives disconnected from 𝓐.

Thus, FPRr could be a better performance measure in 
such a case.

2. The true positive rate (TPR), also called sensitiv-
ity, is defined by:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(5)

denoting the expected proportion of sites correctly 
estimated as the activation region.

3. The family-wise error rate (FWER) is defined by:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(6)

 representing the probability of having at least one 
false positive, given that the activation region is 
empty.

4. The false discovery rate (FDR) is defined by:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(7)

with W=(|𝓛|-|𝓐|)/|𝓐|, 

portraying the proportion of wrongly rejected null 
hypotheses in .

Some of these measures can be combined. For exam-
ple, a widely accepted way of characterizing the per-
formance of a method is through the receiver operat-
ing characteristic (ROC) curve [13], which indicates, for 
a fixed 𝓐, the maximum attainable TPR for any given 
maximum allowable FPR. For one-sided tests, the 
maximum TPR is generally an increasing function of 
the maximum allowable FPR.

To construct the curve, the true region 𝓐 and the 
corresponding activation level a= E[T(u)], u∈𝓐 must be 
known. Then, the study of a method that depends on a 
parameter θ involves setting a value for θ to obtain a 
point on the ROC curve. The parameter acts as a cut-

�̂�
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off point to distinguish between the sites considered 
positives or negatives. Take as an example the meth-
ods based on the following computation:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(8)

where pv(u) depicts the p-value of T(u) and therefore 
pv(u) = 1-P0 (T(u)). This class of methods, denominated 
PW, encompasses most of the standard methods. They 
differ from each other only in the way the threshold θ 
is computed (note: all PW methods have the same ROC 
curve, regardless of the way θ is computed). Thus, for 
the application of the threshold based on a signifi-
cance level α, without correction for multiple hypothe-
ses (uncorrected method), it holds that θ = α. For the 
FWER method [6] [8] [14], with significance level αFWER, it 
follows that:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(9)

where P0
M is the distribution of maxu∈L T(u) under H0. 

Consequently, FWER can be controlled by choosing as 
the threshold the value located at the (1-αFWER) portion 
of the right side of P0

M. For an elaborate discussion on 
the association of FWER with the maximum statistical 
value, see Pantazis [15]. 

 In the case of FDR, with a significance level αFDR [16], 
the procedure for finding the threshold θ begins with 
ordering the individual p-values of sites u ∈ L from the 
largest to the smallest. Accordingly, pv(u1) ≥ pv(u2) ≥ ⋯ 
pv(uN) with N = |𝓛|. Let k be the index of the first site on 
the list, at which the p-value is less than or equal to the 
desired FDR proportion. Hence,

𝑝𝑝𝑝𝑝(𝑢𝑢%) ≤
%
(
𝛼𝛼*+,, 

 

and θ is set as:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(10)

For more details on the method, consult Benjamini [17]. 
Alternatively, given a desired value ϵ for FPRmax, θ can 
simply be set as ϵ (e.g., ϵ = 10-5). If the local hypotheses 
H0u are independent, this is equivalent to the applica-
tion of the standard PW method without correction for 
multiple hypotheses, but with low level of significance 
α = ϵ. Since (as mentioned) the maximum TPR is an 
increasing function of FPR, the value of θ* = ϵ will be 
the one that maximizes the TPR while keeping FPR 
under control:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(11)

where ϵ is a user-specified small positive number. 
Although the actual ROC curve for a given problem is 
unknown (because it depends on the values of T(u) for 
u ϵ 𝓐), it is possible to specify the value of ϵ. Thus, the 
optimal PW method, according to Eq. (11) with θ = θ*, 
will correspond to the UC method with α = 1 - ϵ. It may 
be applied if the field of p-values, or equivalently the 
field P0 (T(u)), u ϵ 𝓛, is known. Such fields can be esti-
mated either theoretically or by non-parametric empir-
ical means (e.g., permutation or re-sampling proce-
dures) [18] [19]. The optimal PW method will be denoted 
by PW* (ϵ).

The signal-to-noise ratio (SNR) [20] is defined as:

𝐻𝐻" = 𝐻𝐻"$$∈ℒ , (1) 

 

𝐹𝐹𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜-|

, (2) 

 

𝐹𝐹𝐹𝐹𝐹𝐹/ = 𝐸𝐸
|(12𝒜𝒜)-⋂𝒜𝒜|
|(12𝒜𝒜)-|

,	 (3)	

 

𝐷𝐷/𝒜𝒜 = 𝑢𝑢 ∈ ℒ ∶ min
=∈𝒜𝒜

𝑢𝑢 − 𝑣𝑣 ≤ 𝑟𝑟 . (4) 

 

𝑇𝑇𝐹𝐹𝐹𝐹 = 𝐸𝐸 |𝒜𝒜⋂𝒜𝒜|
|𝒜𝒜|

, (5) 

 

𝐹𝐹𝐹𝐹𝐸𝐸𝐹𝐹 = 𝐹𝐹𝑟𝑟(𝒜𝒜 ≠ ∅|𝒜𝒜 = ∅), (6)	

 

𝐹𝐹𝐷𝐷𝐹𝐹 = 𝐸𝐸 |𝒜𝒜-⋂𝒜𝒜|
|𝒜𝒜|

= G⋅IJK
|𝒜𝒜|⋅IJKLMJK

, (7) 

 

𝒜𝒜 = 	𝑢𝑢 ∶ 𝑝𝑝𝑣𝑣 𝑢𝑢 ≤ 𝜃𝜃	 , (8) 

 

𝜃𝜃 = 1 − 𝐹𝐹"((𝐹𝐹"Q)RS(1 − 𝛼𝛼IGUK)), (9) 

 

𝜃𝜃 = 𝑝𝑝𝑣𝑣(𝑢𝑢V). (10) 

 

max	 𝑇𝑇𝐹𝐹𝐹𝐹 	𝑠𝑠𝑢𝑢𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠	𝑠𝑠𝑡𝑡	𝐹𝐹𝐹𝐹𝐹𝐹 ≤ 𝜖𝜖, (11) 

 

𝑆𝑆𝑆𝑆𝐹𝐹 =
cde𝐓𝐓($)

g∈𝒜𝒜	

hi
, (12) 

 

𝐓𝐓j(𝑢𝑢) = min𝐓𝐓	(𝑣𝑣)
=∈Gk($)

, 𝑓𝑓𝑡𝑡𝑟𝑟	𝑘𝑘 = 1, … , 𝐾𝐾, (13) 

 

(12)

 where σ0 is the variance of T under H0 and the mini-
mum activation level in T has been arbitrarily assigned 
as the information signal. This represents the worst-
case scenario in which the entire region 𝓐 has a mini-
mum value. On the other hand, the mean activation 
level or the amplitude could also be employed, as dis-
cussed by Welvaert and Rosseel [17] and Acosta-Franco 
et al. [5]. For low values of SNR, the value of TPR 
obtained with PW* (ϵ) in the corresponding PW ROC 
curve is usually low for reasonable values of ϵ.
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Consequently, PW methods have low sensitivity and 
the estimated  is too conservative. 

Hence, more sensitive methods must be developed 
that are able to accurately reflect the active regions, 
which in most cases consist of clusters of several con-
tiguous elements of 𝓛 and not of isolated elements. 
Customarily, these methods use the field T as a start-
ing point for the generation of a new field . The new 
statistic takes the spatial correlation of 𝓐 into account, 
and then processes  with a PW method as before. For 
example,  may refer to the size or mass of a cluster of 
arc-connected elements (u) with values of T above a 
certain threshold [21].

However, this approach has some drawbacks, one 
being that the results depend strongly on the value of 
the selected threshold, and in general no principled 
way exists to make such a selection. Some variants of 
the method alleviate the problem to a certain extent 
by computing  as a weighted combination of cluster 
sizes obtained with different thresholds. Another 
problem is the loss of interpretability, since in many 
cases the significance of the statistic sought is directly 
related to the activation level (i.e., the value of T), and 
to the extension of supra-threshold clusters.

A distinct approach was developed to address these 
problems, being the morphology-based hypothesis 
testing (MBHT) method [12]. It involves the computa-
tion of  as a combination of the results found when 
applying a set of K morphological erosions with differ-
ent sizes of structuring elements to the field T. The 
statistics are calculated as:
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where Wk (u) denotes the structuring element k (e.g., 
a circle of radius rk) centered at u. Then, these values 
are integrated into the statistic T:
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where P0K is the null distribution of the statistic Tk. 
Afterwards, the optimal PW procedure can be applied 
to the field  as detailed above.

The results of this approach are competitive with 
those based on supra-threshold cluster statistics [12] 

and allow a clearer interpretation. Once again, the dis-
advantage is that the results may depend on the shape 
of the structuring elements, and for their selection no 
principled solution exists.

In the current contribution, the approach introduced 
is capable of overcoming these difficulties. It formu-
lates the hypothesis testing task as a Bayesian estima-
tion problem, with an MRF previously applied to the 
active regions, thus implementing a prior constraint 
on the spatial contiguity of 𝓐. For the application of a 
Gaussian Markov random field (GMRF) for fMRI data 
analysis, see Mejia et al. and the references therein [3]. 

The new scheme proved to have better performance 
than PW methods, while maintaining interpretability. 
It also has better performance than MBHT, and does 
not require the selection of any particular shape for 
the structuring elements.

The regularized hypothesis
testing method

In RHT, the hypothesis testing problem is written in 
terms of an image segmentation problem, which is 
solved by using a Bayesian estimation framework. 
First, the hypothesis testing formulation is explained. 
The procedure is laid out for calculating the prior dis-
tributions of sites and the likelihood that they belong 
to an active region. Subsequently, an approximation 
algorithm for finding the maximum a posterior proba-
bility (MAP) estimate is established. Finally, the 
parameter selection problem is addressed.

T̂
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Hypothesis testing formulation
Hypothesis testing may be formulated as a binary 

segmentation problem. Accordingly, given the set of 
sites 𝓛, the problem is reduced to partitioning 𝓛 into 
non-overlapping cohesive regions 𝓐0, 𝓐1, such that 
the activation level in region 𝓐0 is zero, and in region 
𝓐1 is greater than or equal to a known constant a1. 
Hence, 𝓐0 ∩ 𝓐1 = ∅ and 𝓛 = 𝓐0 ∩ 𝓐1, where 𝓐 = 𝓐1 is 
the active region, and therefore 𝓐0 = 𝓐C.

Let c be an unknown discrete label field that identi-
fies the partitions of 𝓛, defining c(u) ∈ 𝓚  {0,1} and 
c(u) = k if u ∈ 𝓐k, for each u ∈ 𝓛. Thus, ac(u) depicts the 
activation level at site u (note: a0 = 0).

Without loss of generality, the activation level in 𝓐1 is 
assumed to be equal to a1, since this represents a worst 
case in terms of the desired false positive control in the 
estimation of 𝓐. Considering T as the field formed by 
the statistics T(u) for all u ∈ 𝓛, the following observa-
tion model is proposed:
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where n is a noise field showing distribution Pn (n), 
with:
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where Zn is a normalization constant and Un (n) is a 
so-called energy function. Then, the likelihood P(T|c) 
is furnished as:
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where Z(T|c) is a normalization constant. It is important 
to find an estimate that considers the spatial correla-
tion in both the noise field n and the label field c. 

As the real statistic T is obtained through a regres-
sion analysis of data provided by a model, it could 
take on a positive or negative value (depending on the 
choice of the statistic), resulting in positive or nega-
tive differences− activation regions− of the data with 
respect to the model. Zero-value regions would still 
portray sites where there is no activation, and the dis-
tribution of values of field n would be determined by 
the selection of the statistic T. Hereafter, a noise 
model is presented as a GMRF. In later sections, we 
remove this assumption by introducing a procedure 
for standardizing the noise field in order to map noise 
fields ranging from arbitrary distributions to standard 
normal distributions.

Noise field model
For the noise field n, a GMRF model was employed, 

taking the form of Eq. (16) with:
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where γ > 0 is a scale parameter, n(u) is the value of 
the field n in site u, and n(v) is the value of the field n 
in a neighboring site v. The parameter τ1 ≥ 0 is related 
to the spatial correlation of the field n and the second 
term added to the first is taken from all pairs of neigh-
boring sites ⟨u, v⟩ in the image. 

When τ1 = 0 and γ = 1, the formulation is reduced to a 
Gaussian white noise model with zero mean and unit 
variance (the “Parameter Selection” section explains 
other types of noise fields). With such a model, the 
likelihood takes the form of Eq. (17), being:
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def
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In the above equation, c(u) is used as an indicator 
function. Accordingly, if its value is 1 (i.e., u ∈ 𝓐1), the 
term (1-c(u))T(u)2 becomes zero, simplifying Eq. (19) to 
an expression that is equivalent to substituting n(u) for 
T(u) - a1c(u). In Eq. (18), the activation level in T(u) is 
eliminated, keeping only the noise component, as in 
the observation model proposed in (15).

Moreover, if c(u) = 0 (i.e., u ∈ 𝓐0), the term c(u)(T(u) - 
a1c(u))2 becomes zero and the term (T(u) - a1c(u) in the 
second summation is simplified to T(u). This is equiv-
alent to substituting n(u) for T(u) in Eq. (18), since T(u) 
already corresponds to purely noise.

Eq. (19) may be rewritten as a quadratic function of a 
vector-valued field b defined as b1 (u) = c(u) and b0 (u) 
= 1 - c(u),
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with a0 = 0 and:
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Bayesian formulation of
the hypothesis testing problem

For field b, we propose the previous application of an 
MRF model [22] [23]. In order to introduce the prior con-
straint that the active regions are spatially cohesive, b 
is modeled with Ising potentials, furnishing the fol-
lowing distribution:
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where τ2 ≥ 0 is a parameter that controls the granular-
ity of field b. 

With this equation and the Gauss-Markov model (16) 
and (18) for noise, it is possible to estimate field b by 
employing a Bayesian formulation, affording the pos-
terior probability distribution:
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where the likelihood is:
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with UT|b given by (20) and field b satisfying (21)-(22). 
Finally, the posterior distribution can be written as:
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where UT|b (b) and Ub (b) are furnished by (20) and 
(24) respectively.

The MAP estimate for field b is obtained by minimiz-
ing (28), subject to the constraints (21)-(22). This is a 
combinatorial optimization problem that is, in gen-
eral, very difficult to solve. Several methods have been 
proposed, such as the iterated conditional modes 
(ICM) algorithm [24], stochastic relaxation [25], graph 
cuts procedure [26], etc.

Here, because of the form of the cost function that 
includes the noise correlation term, we prefer option 
[22], which is based on the relaxation of constraint (22). 
Hence, a new formulation is made:
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Dividing (28) by γ and utilizing ν = τ1/γ and λ = τ2/γ, the 
functional is minimalized as:
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If the noise has a mean of zero, then a0 = 0. The result-
ing optimization problem is:
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This is a quadratic minimization problem, subject to 
linear constraints, which can be solved efficiently by 
employing a projected gradient descent method. 
Consequently, each b(u) (in order to simplify the nota-
tion we remove the dependency of ν, a1, λ) may now be 
interpreted as an approximation for the posterior 
marginal distribution of the indicator functions 1𝓐k(u). 

To obtain the latter it is possible to set 1𝓐k(u) = 1 if bk(u) 
> bj(u) for all j ≠ k. Thus, the estimation of the active 
region is:
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 Parameter selection
A general method can now be introduced to allow the 

model (31)-(33) to be used for any type of noise. The 
parameters a1, ν, λ will be able to be automatically 
selected by controlling the false positive proportion 
while maximizing the performance of the method 
with respect to the TPR.

Standardization of the noise field
The derivation of functional (31) is based on the 

observation model (15) with the Gauss-Markov model 
(16)-(18) for noise. However, the model is not always 
valid in practice, since the T field may have a different 
distribution. The first step, therefore, is to generate a 
transformation capable of mapping the arbitrary dis-
tribution to a standard one. The proposed method is 
based on two properties:

• If x is a random variable and Q its corresponding 
cumulative distribution function (CDF), then the 
distribution function for the random variable Q(x) 
is uniform [27] [28].

• If u is a uniform random variable and G the CDF of 
the normal distribution, then the distribution func-
tion for the random variable G-1 (u) is normal [29].

Combining both properties, it follows that for any 
random variable x, the random variable G-1 (Q(x)) is 
normal. Consequently, the only requirement for trans-
forming a random variable x into a normal variable is 
to know the corresponding CDF Q(x) or to estimate it 
by obtaining the empirical CDF (ECDF) (x) from sam-
ples of the particular distribution.

Assuming that random field samples T0 can be gener-
ated under H0, it is possible to estimate the correspond-
ing null distribution P0 (⋅). Given a field T derived from 
the observations (e.g., the F-test for the generalized 
linear model (GLM) computed at each voxel), the sam-
ple can be mapped to a standard normal distribution Φ:
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where erf(y) denotes the error function [30], the prob-
ability that a random variable Z normally distributed 
with mean μ = 0 and variance σ = 1/2 falls in the range 
[-y, y]. The field , with a standard normal distribution, 
is afforded by the following transformation:

T̂
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Hyper-parameter calibration
The hyper-parameters that control the behavior of 

the method are the spatial correlation parameter ν, the 
minimum activation level a1, and the regularization 
parameter λ. The general idea is to estimate ν from the 
observations, and subsequently compute a1, λ from the 
estimated parameter ν and a parameter ϵ representing 
the level of FPR control.

Estimation of parameter ν: The parameter ν = τ1/γ in 
(31) controls the noise spatial correlation and can be 
estimated by minimizing the negative logarithm of 
the pseudo-likelihood of samples of the field T0 gener-
ated under H0 (i.e., samples of the noise field n).

The pseudo-likelihood is defined as the product of 
the conditional distributions for n(u) at each pixel u, 
given the values at its neighboring fields [31]. Using Eqs. 
(17)-(18), the result is:
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where t is a constant, 𝓝 is the neighborhood of pixel 
u and:
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The minimization of Eq. (37) yields a closed formula 
for the estimation of the parameters:
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Calibration of parameters a1, λ: For a given value ϵ for 
FPR control and a fixed ν =  calculated with Eq. (44), 
the present proposal is to find the optimal parameter 
settings a1*, λ* as the maximizers of the TPR, subject to 
FPR ≤ ϵ. However, the solution of such an optimization 
problem is very difficult to obtain because both TPR 
and FPR depend on the unknown region A. To find an 
approximate solution, the following observations are 
made:

1. Instead of FPR ≤ ϵ, we use FPR2 ≤ ϵ, Eq. (3), since 
the precise location of the boundary of the active 
region 𝓐 is uncertain (as aforementioned) and in 
some sense arbitrary, considering that activation 
generally has a gradual variation in the field.

2. According to our experimental work (see Fig. 2 
and Experiment 1 below), the present method has 
the advantage that false positives do not extend, 
in a significant way, more than a couple of pixels 
away from this boundary. This is due to boundary 
effects close to the active region. For a given fixed 
a1 and λ, therefore, it is possible to estimate the 
constraint FPR2 ≤ ϵ by FPR0 (i.e., the FPR com-
puted in fields generated under H0), which is 
depicted by FPR0 (a1, λ).

ν̂
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3. The calculation can be further simplified based 
on the observation that TPR is an increasing func-
tion of FPR (i.e., the usual shape of the ROC 
curves). Consequently, for a fixed λ:
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which is equivalent to finding a1 (λ), such that 
FPR0 (a1 (λ), λ)= ϵ. Given that a 1 is obtained from 
fields produced under H0 and these fields are 
standardized as described above with the noise 
model (18), the values of a a1 as a function of ν, λ, 
ϵ do not depend on the data. Hence, it is possible 
to pre-compute them based on fields generated 
by utilizing model (16) with U afforded by (18), 
being then the Gibbs sampler algorithm [25].

4. Since the TPR depends on the unknown 𝓐, we 
propose the approximation of TPR for each value 
of λ by the average TPR (λ). The latter value results 
from running the method with the value 1 (λ) for 
a 1 over a finite set of values , which is a discret-
ized version of the collection of activation values 
S in a continuous interval. We use a fixed syn-
thetic active region (a circle):
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where P(a) is taken as the uniform distribution in 
the set S. With these simplifications, the parame-
ter estimation algorithm simply consists of 
sweeping the plausible λ values in a given set Λ (a 
discretization of an interval [0, λmax]), followed by 
finding, for each λ, the value 1 (λ) (such that FPR 
( 1 (λ), λ) =ϵ) and the corresponding (TPR)(λ), as 
explained above. The final λ* is then found as the 
maximizer of (TPR)(λ), affording a1*= 1(λ*). This 
is summarized in Algorithm 1.

â
Ŝâ

â
â

â

The optimal parameters a1*, λ* depend on the data 
only through the estimated parameter ν and the 
desired FPR0 control ϵ. Thus, the optimal values may 
be pre-computed and stored in a table. When a new 
data set arrives, one only needs to standardize the 
noise, estimate ν, read a1*, λ* from the table for the 
desired FPR control, and minimize U (b; ν, a1*, λ*) fur-
nished by Eq. (30). The tables are represented as false 
color images in Figure 1. 

The final algorithm for estimating the active region 
for a given data set is summarized in Algorithm 2.

�̂�

Algoritmos	
	

Algorithm 1: Calibration parameter algorithm (CPA) 

1 

function CPA 𝜈𝜈, 𝜖𝜖  

Input Estimated value of 𝜈𝜈 from (44); desired 
control 𝜖𝜖	for the FPR; search interval Λ	for 𝜆𝜆. 

Output Estimated hyperparameter values 𝑎𝑎'∗, 𝜆𝜆∗ 

2 Begin 

3 For all 𝜆𝜆 ∈ Λ do 

4 Compute 𝑎𝑎'(𝜆𝜆; 	𝜈𝜈, 𝜖𝜖) that solves 𝐹𝐹𝐹𝐹𝐹𝐹(𝑎𝑎', 𝜆𝜆; 𝜈𝜈) = 𝜖𝜖; 

5 Compute 𝑇𝑇𝐹𝐹𝐹𝐹(𝑎𝑎' 𝜆𝜆; 	𝜈𝜈, 𝜖𝜖 , 𝜆𝜆; 𝜈𝜈, 𝜖𝜖) by using (46); 

6 End 

7 Compute 𝜆𝜆∗ = arg	𝑚𝑚𝑎𝑎𝑚𝑚
8∈9

𝑇𝑇𝐹𝐹𝐹𝐹(𝑎𝑎'(𝜆𝜆; 𝜈𝜈, 𝜖𝜖), 𝜆𝜆; 𝜈𝜈, 𝜖𝜖) 

8 Compute 𝑎𝑎'∗ = 	𝑎𝑎' 𝜆𝜆∗ 𝜈𝜈, 𝜖𝜖 ; 𝜈𝜈, 𝜖𝜖 	; 

9 Return 𝑎𝑎'∗, 𝜆𝜆∗ 

10 End 

Algorithm 2: Regularized hypothesis testing (RHT) algorithm 

1 

function RHT (𝐓𝐓, 𝜖𝜖, 𝑎𝑎'∗(𝜈𝜈, 𝜖𝜖), 𝜆𝜆∗(𝜈𝜈, 𝜖𝜖)) 

Input 
Observed field 𝐓𝐓, parameters 𝑎𝑎'∗(𝜈𝜈, 𝜖𝜖),	
𝜆𝜆∗(𝜈𝜈, 𝜖𝜖)	computed with Algorithm 1 and the 
desired control  for the FPR 

Output Estimated active region 𝒜𝒜 

2 Begin 

3 Compute 𝐓𝐓	with (36); 

4 Compute	𝜈𝜈	with (44) using the field 𝐓𝐓; 

5 Compute 𝑎𝑎' = 𝑎𝑎'∗ 𝜈𝜈, 𝜖𝜖 	by interpolating 𝑎𝑎'∗(𝜈𝜈, 𝜖𝜖) from a 
pre-computed table; 

6 Compute 𝜆𝜆 = 	𝜆𝜆∗(𝜈𝜈, 𝜖𝜖)	by interpolating 𝜆𝜆∗(𝜈𝜈, 𝜖𝜖)	from a 
pre-computed table; 

7 Compute 𝑏𝑏∗(𝜈𝜈, 𝑎𝑎', 𝜆𝜆)	by solving (31)-(33); 

8 Compute	𝒜𝒜	with (34); 

9 Return 𝒜𝒜 

10 End 
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MATERIALS AND METHODS

Data description
To study the behavior of the present method, we 

include various experiments based on both synthetic 
and real data.

Synthetic data: The synthetic data was generated 
dynamically and consisted of two components. Firstly, 
𝒮0 = {n1, n2, …, n40} is a set of noise fields of a regular 
lattice 𝓛 of 50×50 pixels, without any activation region. 
That is, the images were produced under H0, using Eqs. 
(16) and (18) with n(u) as random independent vari-
ables showing standard Gaussian distribution. 
Parameter γ = 1 and ν were to be specified in each 
experiment. Secondly, 𝒮1 = {c1, c2, …, c40} consists of 40 
binary labeled fields of a regular lattice of 50×50 pix-
els, representing indicator functions for activation 
regions of different shapes (see Figure 2). Then, the 
simulated observed fields are generated by the follow-
ing model:

FIGURE 1. Estimation of parameters a1, λ as functions 
depending on (ν, – log10 ϵ) for ν ϵ [0, 2] and ϵ ϵ [106, 10-2].
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where a denotes the activation level and its value is 
specified in each experiment.

Real data: Experiments with real data were based on 
the auditory dataset [32]. The data corresponded to 96 
volumes of a single subject (each volume composed of 

FIGURE 2. Dataset: Examples of synthetic active regions.

64×64×64 voxels of 1×1×3 mm), which were acquired 
in blocks of 6 volumes. Since the repetition time 
between scanning was set to 7 seconds, there were a 
total of 16 blocks of 42 seconds (although due to the 
effects related to T1, the first two blocks were dis-
carded). The sequence of volumes alternated between 
blocks of rest and stimulation, starting with rest. 
Auditory stimulation consisted of two-syllable words 
presented binaurally at a rate of 60 per minute.

Localization of false positives
for the RHT algorithm

This experiment was designed to test the assumption 
that in the proposed method the false positive errors 
are concentrated close to the boundary of the active 
region. Consequently, FPR2 can be well approximated 
by FPR0 (i.e., FPR computed over images produced 
under H0).

A total of 1000 independent runs were conducted for 
the procedure. Briefly, set S_0 was generated with 
parameter ν = 0.75, a value estimated from fMRI 
images by utilizing Eq. (44). Fields T1, T2, …, T40 were 
obtained by using model (47), sets 𝒮0 and 𝒮1, and ran-
domly selected activation level α in the interval [2] [4]. 

Algorithm 2 was applied for levels of FPR control ϵ ∈ 
{0.001,0.0001,0.00001,0.000001} with the optimally 
calibrated parameters, computing the average value of 
FPR2 for the set 𝒮1 and FPR for the set 𝒮0. The results 
are shown in Table 1. As can be appreciated, by cali-
brating the parameters of the method to control FPR0, 
the appropriate control over FPR2 is also achieved.
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Performance of the method
The first set of the following experiments was 

designed to make a comparison of RHT to FWER [8] and 
MBHT [12], the latter two being the state-of-the-art 
methods that take the spatial expanse of the active 
region into account. Accordingly, the set S_0 was pro-
duced with parameter ν ∈ {0,0.5,1,1.5}. A total of 1000 
runs were performed, randomly selecting the active 
regions 𝓐 from 𝒮1 with an activation level a ∈ {0.0, 
0.25, 0.5, ⋯, 5}. The average TPR was computed. The 
RHT method was carried out by employing Algorithm 
2 and a level of false positive control of  = 0.000001.

Based on the results from each method, RHT proved 
capable of providing better TPR values than the other 
two algorithms for most activation levels (Figure 3). 
The improvement is likely due to the consideration in 
the new model of the spatial cohesion of the activation 
regions (controlled by the regularization parameter λ) 
as well as the spatial correlation in the noise field (con-
trolled by the parameter ν). Contrarily, the rest of the 
algorithms assume that these two components of sta-
tistic T are formed by independent variables.

Experiments with fMRI data
In the second set of experiments, Algorithm 2 of the 

proposed method was applied to the real fMRI data 
described at the beginning of this section. RHT was 
not applied directly to the original data, but rather to a 
field T (an F-test field computed from the data). The 
first step was to standardize the field in order to obtain 

 with Eq. (36), which is the input of the segmentation 
algorithm. Hence, it was necessary to calculate the 
ECDF from the data. Here after, some details about the 
aforementioned steps are explained.

Data pre-processing. The aim of the pre-processing 
was to remove artifacts in the data as well as to pre-
pare the data to maximize the statistical analysis. Here 
we use spatial pre-processing provided in the script 
auditory_spm12_batch.m, which implies realignment, 

co-registration, segmentation and normalization. 
Although the original script (available online at http://
www.fil.ion.ucl.ac.uk/spm/data/auditory/) includes a 
smoothing step to ensure that some assumptions 
about noise distribution are fulfilled [11] [18], RHT omits 
this step because it is capable of handling different 
noise distributions. Actually, the inclusion of the step 
would not be beneficial. The data for these calcula-
tions was processed on SPM software version 12 
(available at http://www.fil.ion.ucl.ac.uk/spm/) and 
MATLAB 2018a. A slice of the pre-processed data was 
selected to perform the following experiments.

F-test field. After the pre-processing stage, the statis-
tical analysis was carried out to determine the active 
voxels that correspond to a given stimulus. To obtain 
the active regions, a voxel-wise analysis is typically 
conducted by fitting models to a single voxel time 
course. The data at each voxel is modeled in a univari-
ate way with a linear model:

FIGURE 3. Performance comparison of RHT with the 
punctual FWER and MBHT methods for different noise 

spatial correlation ν and ϵ = 0.000001.
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TABLE 1. Experiment of the FPR control at different
levels, utilizing a synthetic dataset. First column, level

of FPR control; second column, average FPR for images 
generated under H0; third column, average FPR2

for synthetic active regions.Tabla	1	
	

𝛜𝛜 FPR0 FPR2 

0.01 0.0042504 0.0051335 

0.001 0.0001340 0.0001714 

0.0001 0.0000436 0.0000436 

0.00001 0.0000044 0.0000050 

0.000001 0.0000004 0.0000004 

	
Table 1. Experiment of FPR control at different levels. First column: level of FPR control, second column:  average 

FPR for images generated under 𝐻𝐻#, third column:  average 𝐹𝐹𝐹𝐹𝐹𝐹' for synthetic active regions. where yt, the dependent variable, is a vector formed 
by the intensity values at each time point. β0 and β1 are 
the intercept and the slope of the linear model, respec-
tively. Meanwhile, ϵt is the error term in the model fit-
ting, which captures factors other than xt, such as sig-
nal noise, capable of affecting yt. The explanatory 
variable xt corresponds to the model of neural activity. 
It is also a vector comprised of entries depicting a real 
value at each time point:
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where ht stands for the hemodynamic response 
function and dt ϵ {0,1} is an impulse train that indi-
cates whether the stimulus was present at time t. 
Then, the neural activity is modeled as a convolu-
tion,* in which the hemodynamic response function 
acts as a filter. 

The F-test represents the ratio between the variance 
described in a reduced model yt = β0 + ϵt (without any 
additional effect) and the full model (48)-(49) that 
includes the effect of interest.

Finally, the F-test was computed for every voxel in 
the volume. The resulting field was the input for the 
RHT algorithm, calculated by using the script audi-
tory_spm12_batch.m with the default parameters. 

Null distribution. Before the segmentation step of the 
RHT algorithm, it was necessary to normalize the F-test 
field and thus to estimate the null distribution. More 
specifically, a sample of the F-test was obtained under 
H0, allowing for the computation of the corresponding 
ECDF. This was carried out by permuting the order of 
the stimulus labels d(t) for the volumes (see [33] for more 
details), and by calculating the F-test field for each per-
mutation, as explained in the previous section. After 
completion of these procedures, it was possible to apply 
Eq. (36) to transform the original F-test field (i.e., the 
original order of the labels d(t), without permutation) to 
one that follows a standard normal distribution. Finally, 
for the  fields generated under H0, the value of ν was 
estimated by utilizing Eq. (44), finding ν = 0.75.

RHT algorithm robustness
with respect to SNR

In order to investigate the stability of the present 
method, the algorithm was tested by modifying the 
SNR in the data from which the activation region would 
be established. Accordingly, blocks of observations 
were eliminated from the full experiment. As afore-
mentioned, the first two of the 16 original blocks were 
eliminated due to effects related to T1. Hence, 14 blocks 
(84 volumes) were taken initially to perform the proce-
dure described earlier in this section to identify the 
activation regions. Subsequently, the number of blocks 
was reduced by two, taking 12 blocks (72 volumes) and 
performing the procedure again to determine the acti-
vation regions, and so on until reaching 4 blocks.

In each case, a tolerance for false positives to ϵ = 
0.0001 was established and the results of RHT were 
compared to those obtained with MBHT and FWER 
using the same number of blocks. It can be verified by 
visual inspection (Figure 4) that the three methods− 
RHT, MBHT and FWER− detected activation regions 
corresponding to the primary auditory cortex, located 
at the upper sides of the temporal lobes, specifically on 
the transverse temporal gyri [34] [35]. 

T̂
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FIGURE 4. Performance comparison of the RHT,
MBHT and FWER by modifying the SNR in the data

through the elimination of blocks. 

The MBHT and RHT methods afforded better perfor-
mance and robustness for the reduction of information 
in most cases. MBHT and FWER displayed less accu-
racy when reducing the signal information for ϵ = 
0.00001. While FWER exhibited difficulties in the 
identification of activation regions with 6 and 4 blocks 
(barely finding any region), RHT and MBHT gave bet-
ter performance. However, when the number of blocks 
was decreased to only 4, MBHT was not able to detect 
any activation region, while RHT still had a proficient 
outcome. RHT outperformed the other models two by 
successfully recovering both regions.

Degree of false positive control. To avoid having to 
specify a particular value for ϵ, it is possible to estimate 
𝓐 for a set 𝒮 of ϵ values and produce a map in which the 
degree of false positive control (log ϵ for each  (ϵ) = 
RHT(T, , a1

* (ν, ϵ), λ* (ν, ϵ)) is color coded. The result is 
very similar to the p-value maps that are created for 
the classic PW method. Specifically, we define the 
degree of false positive control at site u as:

C() qS, ê; è, ` =

C()
≠∈Æ

q, qS, ê; è, ` ( q dq ≈
S

|Æ|
C()≠ (q, qS(ê; è, `), ê; è, `), 

(46) 

 

qS(ê) = arg	max 	
≠§

C()(qS, ê), (47) 

 

±≤ = ≥" + ≥Sú≤ + `≤, (48) 

 

ú≤ = í≤ ∗ ℎ¥ (49) 

 

ñqú
µ∈∂	

− log ` ∑, µ 8 , (50) 

 

 

(50)

where 1 (ϵ) (u) is the indicator function for the set A 
(ϵ). An example of this type of map is shown in 

Figure 5, with 𝒮 = {0.01,0.001,0.0001,0.00001}. The 
map portrays important differences between the first 
and second levels, but in the last levels the detected 
regions are more similar to each other. The slight vari-
ations exist only at the border of the active region.

RESULTS AND DISCUSSION 
We herein describe a new method, RHT, for detecting 

active regions in random fields. The focus is on appli-
cations for neuroimaging. With the present method, 
the expected TPR is maximized while the false posi-
tives are kept under control by specifying an upper 
bound ϵ on FPR0 (the FPR under H0). By making ϵ small 
enough, there is an effective correction for multiple 
hypotheses since the total number of false positives in 
the entire field is controlled. We demonstrated experi-
mentally that most of the false positives produced by 

FIGURE 5. Degree of false positive control over
fMRI data described in the text.

�̂�
ϵ̂

�̂�
𝓐
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RHT are confined to the vicinity of the boundary of 
the active region. Thus, ϵ also bounds the FPR in the 
data outside of this boundary (i.e., the FPR2).

CONCLUSIONS
The main contributions of the present model are the 

following:

1. A Bayesian formulation of the hypothesis testing 
problem in random fields was reduced to an 
image or volume segmentation problem, for 
which the maximum a posteriori estimate could 
be calculated.

2. A new Markovian random field model for cor-
related noise was implemented, from which the 
appropriate prior distribution could be computed.

3. A method for estimating the hyper-parameters of 
the model was conceived, involving two main fac-
tors: a) the application of a closed formula for the 
noise correlation parameter ν based on the maxi-
mization of the pseudo-likelihood of the data, and 
b) a pre-calculated lookup table (independent of 
the data) for the λ and a1 parameters. This method 
makes the whole procedure computationally effi-
cient, since the only thing needed for its applica-
tion is a way of generating sample images from the 
null distribution. Such samples can be obtained, 
for example, by using permutation procedures.

4. To avoid having to specify a particular value for 
the ϵ parameter, we demonstrated how to present 
a family of solutions for different values of ϵ in a 
single image (the DFPC map), similar to the clas-
sic p-value maps.

5. The performance of the method was validated 
with synthetic and real data (fMRI images). In 
both cases, RHT provided an improvement in the 
TPR (while maintaining the FPR under control) 
compared to the competitive state-of-the-art 
methods (MBHT and FWER). For the fMRI data, 
RHT displayed the best sensitivity, which was 
particularly high for low SNR. 

For simplicity, in the current analysis we focused on 
two-dimensional data. However, it is possible to 
directly extend the method to 3D simply by consider-
ing an extended neighborhood (e.g., 6 or 26 neighbors 
for each voxel) in the prior MRF models for the active 
region and the noise, at the expense of an increased 
computational complexity.

Although the example application here corresponds 
to fMRI, the RHT method may be applied to any situa-
tion involving the testing of a field of local hypotheses, 
such as the ones that are common in neuroimaging, 
remote sensing, and so on.

ABBREVIATIONS
CDF, cumulative distribution function
ECDF, empirical cumulative distribution function
FDR, false discovery rate
FPR, false positive rate
fMRI, functional magnetic resonance imaging
FWER, family-wise error rate
GMRF, Gaussian Markov random fields
H0, null hypothesis
MBAT, morphology-based hypothesis testing
MAP, maximum a posterior probability
MRF, Markovian random field
PW, pointwise method
RHT, regularized hypothesis testing
ROC, receiver operating characteristic
SNR, signal-to-noise ratio
TPR, true positive rate
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