Image-based Glaucoma Classification Using Fundus Images and Deep Learning
DOI:
https://doi.org/10.17488/RMIB.42.3.2Keywords:
Deep Learning, Glaucoma diagnosis, Image-base classification, Convolutional Neural NetworkAbstract
Glaucoma is an eye disease that gradually affects the optic nerve. Intravascular high pressure can be controlled to prevent total vision loss, but early glaucoma detection is crucial. The optic disc has been a notable landmark for finding abnormalities in the retina. The rapid development of computer vision techniques has made it possible to analyze eye conditions from images enabling to help a specialist to make a diagnosis using a technique that is non-invasive in its initial stage through fundus images. We propose a methodology glaucoma detection using deep learning. A convolutional neural network (CNN) is trained to extract multiple features, to classify fundus images. The accuracy, sensitivity, and the area under the curve obtained using the ORIGA database are 93.22%, 94.14%, and 93.98%. The use of the algorithm for the automatic region of interest detection in conjunction with our CNN structure considerably increases the glaucoma detecting accuracy in the ORIGA database.
Downloads
References
Raghavendra U, Fujita H, Bhandary SV, Gudigar A, et al. Deep convolution neural network for accurate diagnosis of glaucoma using digital fundus images. Inf Sci [Internet]. 2018;441:41-49. Available from:
https://doi.org/10.1016/j.ins.2018.01.051
Belghith A, Balasubramanian M, Bowd C, Weinreb RN, et al. Glaucoma progression detection using variational expectation maximization algorithm. In: 2013 IEEE 10th International Symposium on Biomedical Imaging [Internet]. San Francisco: IEEE. 2013:876-879. Available from: https://doi.org/10.1109/ISBI.2013.6556615
Yin F, Liu J, Wong DWJ, Tan NM, et al. Automated segmentation of optic disc and optic cup in fundus images for glaucoma diagnosis. In: 2012 25th IEEE International Symposium on Computer-Based Medical Systems (CBMS). Rome: IEEE. 2012:1-6. Available from: https://doi.org/10.1109/CBMS.2012.6266344
Zilly J, Buhmann JM, Mahapatra D. Glaucoma detection using entropy sampling and ensemble learning for automatic optic cup and disc segmentation. Comput Med Imaging Graph [Internet]. 2017;55:28-41. Available from:
https://doi.org/10.1016/j.compmedimag.2016.07.012
Chen X, Xu Y, Kee Wong DWK, Wong TY, et al. Glaucoma detection based on deep convolutional neural network. In: 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) [Internet]. Milan: IEEE. 2015:715-718. Available from:
https://doi.org/10.1109/EMBC.2015.7318462
Acharya UR, Ng EYN, Eugene LW, Noronha KP, et al. Decision support system for the glaucoma using Gabor transformation. Biomed Signal Process Control [Internet]. 2015;15:18-26. Available from:
https://doi.org/10.1016/j.bspc.2014.09.004
Díaz Pinto AY. Machine Learning for Glaucoma Assessment using Fundus Images [Ph.D.'s thesis]. [Valencia]: Universitat Politècnica de València, 2019. 117P.
Gour N, Khanna P. Automated glaucoma detection using GIST and pyramid histogram of oriented gradients (PHOG) descriptors. Pattern Recognit Lett [Internet]. 2020;137:3-11. Available from:
https://doi.org/10.1016/j.patrec.2019.04.004
Nawaldgi S. Review of automated glaucoma detection techniques. In: 2016 International Conference on Wireless Communications, Signal Processing and Networking (WiSPNET) [Internet]. Chennai: IEEE. 2016:1435-1438. Available from:
https://doi.org/10.1109/WiSPNET.2016.7566373
Septiarini A, Harjoko A, Pulungan R, Ekantini R. Automated Detection of Retinal Nerve Fiber Layer by Texture-Based Analysis for Glaucoma Evaluation. Healthc Inform Res [Internet]. 2018;24(4):335. Available from:
https://doi.org/10.4258/hir.2018.24.4.335
Del Portillo C. Cómo Entender y Vivir Con Glaucoma. Glaucoma Research Foundation. [Internet]. 2013; Available from:
https://www.glaucoma.org/GRF_Understanding_Glaucoma_ES
Li A, Wang Y, Cheng J, Liu J. Combining Multiple Deep Features for Glaucoma Classification. In: 2018 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) [Internet]. Calgary: IEEE. 2018:985-989. Available from:
https://doi.org/10.1109/ICASSP.2018.8462089
Carrillo J, Bautista L, Villamizar J, Rueda J, et al. Glaucoma Detection Using Fundus Images of the Eye. In: 2019 XXII Symposium on Image, Signal Processing and Artificial Vision (STSIVA) [Internet]. Bucaramanga: IEEE. 2019:1-4. Available from: https://doi.org/10.1109/STSIVA.2019.8730250
Sarhan A, Rokne J, Alhajj R. Glaucoma detection using image processing techniques: A literature review. Comput Med Imaging Graph [Internet]. 2019;78:101657. Available from:
https://doi.org/10.1016/j.compmedimag.2019.101657
Li L, Xu M, Liu H, Li Y, et al. A Large-Scale Database and a CNN Model for Attention-Based Glaucoma Detection. IEEE Trans Med Imaging [Internet]. 2020;39(2):413-424. Available from: https://doi.org/10.1109/TMI.2019.2927226
Zhang Z, Lee BH, Liu J, Wong DWK, et al. Optic disc region of interest localization in fundus image for Glaucoma detection in ARGALI. In: 2010 5th IEEE Conference on Industrial Electronics and Applications [Internet]. Taichung: IEEE. 2010:1686-1689. Available from: https://doi.org/10.1109/ICIEA.2010.5515221
Rani A, Mittal D. Measurement of Arterio-Venous Ratio for Detection of Hypertensive Retinopathy through Digital Color Fundus Images. J Biomed Eng Med Imaging [Internet]. 2015;2(5):35. Available from: https://doi.org/10.14738/jbemi.25.1577
Zhang Z, Yin FS, Liu J, Wong WK, et al. ORIGA-light: An online retinal fundus image database for glaucoma analysis and research. In: 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology [Internet]. Buenos Aires: IEEE. 2010:3065-3068. Available from: https://doi.org/10.1109/IEMBS.2010.5626137
Sng CC, Foo L-L, Cheng C-Y, Allen JC, et al. Determinants of Anterior Chamber Depth: The Singapore Chinese Eye Study. Ophthalmology [Internet]. 2012;119(6):1143-1150. Available from: https://doi.org/10.1016/j.ophtha.2012.01.011
Decencière E, Zhang X, Cazuguel G, Lay B, et al. Feedback on a publicly distributed image database: the Messidor database. Image Anal Stereol [Internet]. 2014;33:231-234. Available from: https://doi.org/10.5566/ias.1155
Brandon L, Hoover A. Drusen Detection in a Retinal Image Using Multi-level Analysis. In: Ellis R.E., Peters T.M. (eds). Medical Image Computing and Computer-Assisted Intervention - MICCAI 2003 [Internet]. Springer, Berlin, Heidelberg: Lecture Notes in Computer Science. 2003:618-625p. Available from:
https://doi.org/10.1007/978-3-540-39899-8_76
Sivaswamy J, Krishnadas SR, Joshi GD, Jain M, et al. Drishti-GS: Retinal image dataset for optic nerve head segmentation. In: 2014 IEEE 11th International Symposium on Biomedical Imaging (ISBI) [Internet]. Beijing: IEEE. 2014:53-56. Available from: https://doi.org/10.1109/ISBI.2014.6867807
Han J, Kamber M, Pei J. Data Mining: Concepts and Techniques [Internet]. Waltham: Elsevier. 2011:113-114p. Available from: https://doi.org/10.1016/B978-0-12-381479-1.00016-2
Bhatkalkar BJ, Reddy DR, Prabhu S, Bhandary S. Improving the Performance of Convolutional Neural Network for the Segmentation of Optic Disc in Fundus Images Using Attention Gates and Conditional Random Fields. IEEE Access [Internet]. 2020;8:29299-29310. Available from: https://doi.org/10.1109/ACCESS.2020.2972318
Gheisari S, Shariflou S, Phu J, Kennedy PJ, et al. A combined convolutional and recurrent neural network for enhanced glaucoma detection. Sci Rep [Internet]. 2021;11(1):1995. Available from: https://doi.org/10.1038/s41598-021-81554-4
Gómez-Valverde J, Antón A, Fatti G, Liefers B, et al. Automatic glaucoma classification using color fundus images based on convolutional neural networks and transfer learning. Biomed Opt Express [Internet]. 2019;10(2):892-913. Available from: https://doi.org/10.1364/BOE.10.000892
Diaz-Pinto A, Morales S, Naranjo V, Köhler T, et al. CNNs for automatic glaucoma assessment using fundus images: an extensive validation. BioMed Eng Online [Internet]. 2019;18(1):1-19. Available from: https://doi.org/10.1186/s12938-019-0649-y
Unión Internacional de Telecomunicaciones. Parámetros de codificación de televisión digital para estudios con formatos de imagen normal 4:3 y de pantalla ancha 16:9. ITU [Internet]. 2011; Available from: RECOMENDACIÓN UIT-R BT.601-7 - Parámetros de codificación de televisión digital para estudios con formatos de imagen normal 4:3 y de pantalla ancha 16:9 (itu.int)
Simonyan K, Zisserman A. Very Deep Convolutional Networks for Large-Scale Image Recognition. arXiv [Internet]. 2014; Available from:
https://arxiv.org/abs/1409.1556
Krizhevsky A, Sutskever I, Hinton GE. ImageNet classification with deep convolutional neural networks. Commun [Internet]. 2017; 60(6):84-90. Available from: https://doi.org/10.1145/3065386
Erhan D, Bengio Y, Courville AC, Vincent P. Visualizing Higher-Layer Features of a Deep Network [Internet]; 2009. Report 1341. Available from: (PDF) Visualizing Higher-Layer Features of a Deep Network (researchgate.net)
Zeiler MD, Taylor GW, Fergus R. Adaptive deconvolutional networks for mid and high level feature learning. In: 2011 International Conference on Computer Vision [Internet]. Barcelona: IEEE. 2011:2018-2025. Available from: https://doi.org/10.1109/ICCV.2011.6126474
Dosovitskiy A, Brox T. Inverting Visual Representations with Convolutional Networks. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) [Internet]. Las Vegas: IEEE. 2016:4829-4837. Available from: https://doi.org/10.1109/CVPR.2016.522
Selvaraju RR, Cogswell M, Das A, Vedantam R, et al. Grad-CAM: Visual Explanations from Deep Networks via Gradient-Based Localization. In: 2017 IEEE International Conference on Computer Vision (ICCV) [Internet]. Venice: IEEE. 2017:618-626. Available from: https://doi.org/10.1109/ICCV.2017.74
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2021 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.