Biomechanics Assessment of Kinematic Parameters of Low-Sprint Start in High-Performance Athletes Using Three Dimensional Motion Capture System

  • Mirvana Elizabeth Gonzalez Macias Universidad Autónoma de Baja California
  • Carlos Villa Angulo Laboratory of Bioinformatics and Biofotonics, Engineering Institute, Autonomous University of Baja California, Mexicali, B.C., México.
  • Emilio Manuel Arrayales Millan Laboratory Biomechanics, Faculty of Sports, Autonomous University of Baja California, Mexicali, B.C., México.
  • Karla Raquel Keys Gonzalez Laboratory Biomechanics, Faculty of Sports, Autonomous University of Baja California, Mexicali, B.C., México.
Keywords: Biomechanics assessment, Kinematic parameters, Low-sprint start

Abstract

In a sprint start, the athlete takes up a position with their hands just behind a line, arms vertical, feet generally placed about a shoe length apart, and the hips rising above the line of the head. Mistakes in this position influence the execution of the low-sprint start, and can drastically influence the initial running speed and acceleration achieved by the athlete. Common mistakes occur due to the misconception that athletes must also lean forward, bringing the shoulders ahead of their hands and putting pressure on them. A standard approach to identify sprint start mistakes is to use a stick or weighted string to drop down from the shoulders. The effective implementation of this approach depends on the coach’s experience and remains a significant challenge. In this study, a three-dimensional motion capture system with the Vicon® Plug-in-Gait model was used to characterize the kinematic parameters that influence the execution of low-sprint start in six high-performance athletes. The main kinematic parameters are reaction time, stride length, and stride time. The obtained results demonstrate the potential utility of a three-dimensional motion capture system to assess the kinematic parameters of low-sprint start in high-performance athletes.

Downloads

Download data is not yet available.

References

Fortier S, Basset FA, Mbourou G, Favérial J, Teasdale N. Starting block performance in sprinters: A statistical method for identifying discriminative parameters of the performance and an analysis of the effect of providing feedback over a 6-week period. J Sport Sci Med [Internet]. 2005;4(2):134–143. Available from: https://www.jssm.org/jssm-04-134.xml%3EFulltext#

Bezodis NE, Salo AI, Trewartha G. Choice of sprint start performance measure affects the performance-based ranking within a group of sprinters: Which is the most appropriate measure? Sports Biomech [Internet]. 2010;9(4):258–269. Available from: https://doi.org/10.1080/14763141.2010.538713

Guissard N, Duchateau J, Hainaut K.. EMG and mechanical changes during sprint starts at different front block obliquities. Med Sci Sports Exerc [Internet]. 1992;24(11):1257–1263. Available from: https://journals.lww.com/acsm-msse/Abstract/1992/11000/EMG%20and%20mechanical%20changes%20during%20sprint%20starts%20at.10.aspx

Slawinski J, Dumas R, Cheze L, Ontanon G, et al. 3D Kinematic of Bunched, Medium and Elongated Sprint Start. Int J Sports Med [Internet]. 2012;33(7):555–560. Available from: https://doi.org/10.1055/s-0032-1304587

Theophilos P, Nikolaos M, Kiriakos A, Athanasia S, et al. Evaluation of sprinting performance in adolescent athletes with running shoes, spikes and barefoot. J Phys Educ Sport [Internet]. 2014;14(4):593–598. Available from: http://dx.doi.org/10.7752/jpes.2014.04092

Schot PK, Knutzen KM. A Biomechanical Analysis of Four Sprint Start Positions. Res Q Exerc Sport [Internet]. 1992;63(2):137–147. Available from: https://doi.org/10.1080/02701367.1992.10607573

Čoh M, Peharec S, Bačić P, Mackala K. Biomechanical Differences in the Sprint Start between Faster and Slower High-Level Sprinters. J Hum Kinet [Internet]. 2017;56(1):29–38. Available from: https://dx.doi.org/10.1515%2Fhukin-2017-0020

Mero A, Komi PV, Gregor RJ. Biomechanics of Sprint Running. Sports Med [Internet]. 1992;13(6):376–392. Available from: https://doi.org/10.2165/00007256-199213060-00002

Gutiérrez-Dávila M, Dapena J, Campos J. The Effect of Muscular Pre-Tensing on the Sprint Start. J Appl Biomech [Internet]. 2006;22(3):194–201. Available from: https://doi.org/10.1123/jab.22.3.194

Bezodis NE, Willwacher S, Salo AIT. The Biomechanics of the Track and Field Sprint Start: A Narrative Review. Sports Med [Internet]. 2019;49(9):1345-1364. Available from: https://doi.org/10.1007/s40279-019-01138-1

Bezodis NE, Salo AIT, Trewartha G. Measurement Error in Estimates of Sprint Velocity from a Laser Displacemeny Measurement Device. Int J Med [Internet]. 2012;33(6):439-444. Available from: https://doi.org/10.1055/s-0031-1301313

Bergamini P, Picerno P, Pillet H, Natta F, et al. Estimation of temporal parameters during sprint running using a trunk-mounted inertial measurement unit. J Biomech [Internet]. 2012;45(6):1123-1126. Available from: https://doi.org/10.1016/j.jbiomech.2011.12.020

Falbriard M, Meyer F, Mariani B, Millet GP, et al. Accurate Estimation of Running Temporal Parameters Using Foot-Worn Inertial Sensors. Front Physiol [Internet]. 2018;9:610. Available from: https://dx.doi.org/10.3389%2Ffphys.2018.00610

Seidl T, Linke D, Lames M. Estimation and validation of spatio-temporal parameters for sprint running using a radio-based tracking system. J Biomech [Internet]. 2017;65:89-95. Available from: https://doi.org/10.1016/j.jbiomech.2017.10.003

Nagahara R, Botter A, Rejc E, Koido M, et al. Concurrent Validity of GPS for Deriving Mechanical Properties of Sprint Acceleration. Int J Sports Physiol Perform [Internet]. 2017;12(1):129-132. Available from: https://doi.org/10.1123/ijspp.2015-0566

Samozino P, Rabita G, Dorel S, Slawinski J, et al. A simple method for measuring power, force, velocity properties, and mechanical effectiveness in sprint running. Scand J Med Sci Sports [Internet]. 2016;26(6):648-658. Available from: https://doi.org/10.1111/sms.12490

Bergamini E, Guillon P, Camomilla V, Pillet H, et al. Trunk Inclination Estimate During the Sprint Start Using an Inertial Measurement Unit: A Validation Study. J Appl Biomech [Internet]. 2013;29(5):622-627. Available from: https://doi.org/10.1123/jab.29.5.622

Chew D-K, Ngoh KJH, Gouwanda D, Gopalai AA. Estimating running spatial and temporal parameters using an inertial sensor. Sports Eng [Internet]. 2018;21:115-122. Available from: https://doi.org/10.1007/s12283-017-0255-9

Yang S, Mohr C, Li Q. Ambulatory running speed estimation using an inertial sensor. Gait Posture [Internet]. 2011;34(4):462-466. Available from: https://doi.org/10.1016/j.gaitpost.2011.06.019

Savoie P, Cameron JAD, Kaye ME, Scheme EJ. Automation of the Timed-Up-and-Go Test Using a Conventional Video Camera. IEEE J Biomed Health Inform [Internet]. 2020;24(4):1196–205. Available from: https://doi.org/10.1109/jbhi.2019.2934342

Thomas G, Gade R, Moeslund TB, Carr P, et al. Computer vision for sports: Current applications and research topics. Comput Vis Image Underst [Internet]. 2017;159:3–18. Available from: https://doi.org/10.1016/j.cviu.2017.04.011

Begon M, Colloud F, Fohanno V, Bahuaud P, et al. Computation of the 3D kinematics in a global frame over a 40 m-long pathway using a rolling motion analysis system. J Biomech [Internet]. 2009;42(16):2649–2653. Available from: doi: 10.1016/j.jbiomech.2009.08.020

Bernardina GRD, Monnet T, Pinto HT, de Barros RML, et al. Are Action Sport Cameras Accurate Enough for 3D Motion Analysis? A Comparison With a Commercial Motion Capture System. J Appl Biomech [Internet]. 2019;35(1):80–86. Available from: https://doi.org/10.1123/jab.2017-0101

Guerra-Filho G. Optical Motion Capture: Theory and Implementation. Theor App Inform. 2005;12:61-90.

Vicon. Plug-In Gait modelling instructions. Vicon® Manual, Vicon® Motion Systems [Internet]. Oxford Metrics Ltd; 2002. Available from: https://www.vicon.com/software/oxford-foot-model/

Arellano-González JC, Medellin-Castillo HI, Cardenas-Galindo JA. Analysis of the kinematic variation of human gait under different walking conditions using computer vision. Rev Mex Ing Biomed [Internet]. 2017;38(2):437–457. Available from: https://doi.org/10.17488/rmib.38.2.2

GNU. The R Project for Statistical Computing [Internet]. R;2016. Available from: https://www.R-project.org/

Nair SP, Gibbs S, Arnold G, Abboud R, et al. A method to calculate the centre of the ankle joint: A comparison with the Vicon® Plug-in-Gait model. Clin Biomech [Internet]. 2010;25(6):582–587. Available from: https://doi.org/10.1016/j.clinbiomech.2010.03.004

Khamis S, Danino B, Springer S, Ovadia D, et al. Detecting Anatomical Leg Length Discrepancy Using the Plug-in-Gait Model. Appl Sci [Internet]. 2017;7(9):926. Available from: https://doi.org/10.3390/app7090926

Duffell LD, Hope N, McGregor AH. Comparison of kinematic and kinetic parameters calculated using a clusterbased model and Vicon’s plug-in gait. Proc Inst Mech Eng H [Internet]. 2014;228(2):206–210. Available from: https://doi.org/10.1177/0954411913518747

Korchemny R. A new concept for sprint start and acceleration training. New Stud Athl [Internet]. 1992;7(4):65–72. Available from: http://centrostudilombardia.com/wp-content/uploads/IAAF-Corsa-Velocita/1992-A-new-concept-for-sprint-start-and-acceleration-training.pdf

Slawinski J, Bonnefoy A, Levêque J-M, Ontanon G, et al. Kinematic and Kinetic Comparisons of Elite and Well-Trained Sprinters During Sprint Start. J Strength Cond Res [Internet]. 2010;24(4):896–905. Available from: https://doi.org/10.1519/jsc.0b013e3181ad3448

Published
2022-04-26
How to Cite
Gonzalez Macias, M. E., Villa Angulo, C., Arrayales Millan, E. M., & Keys Gonzalez, K. R. (2022). Biomechanics Assessment of Kinematic Parameters of Low-Sprint Start in High-Performance Athletes Using Three Dimensional Motion Capture System. Mexican Journal of Biomedical Engineering, 43(1), 52-64. Retrieved from https://rmib.mx/index.php/rmib/article/view/1214
Section
Technical Note