A Chitosan-based Hydrogel with PLCL, ZnO NPs, and Oligoelements: A Promising Antibiotic Scaffold for Tissue Engineering

  • Yvain de los Ángeles Salinas Delgado Universidad de La Ciénega del Estado de Michoacán de Ocampo
  • Sthepanie Soria Sánchez Universidad de La Ciénega del Estado de Michoacán de Ocampo
  • Gabriela Guadalupe Esquivel Barajas Universidad de La Ciénega del Estado de Michoacán de Ocampo
  • Eduardo Leos Quiñonez Hospital Materno Infantil
  • Luis Alberto Bretado Aragón Universidad de La Cienega del Estado de Michoacán de Ocampo
Keywords: Chitosan, PLCL, ZnO nanoparticles, Antibacterial, Tissue engineering

Abstract

Tissue engineering involves anchorage-dependent cells cultured on scaffolds, with growth factors added to facilitate cell proliferation. Its use in transplants implies the risk of bacterial infection. The current contribution describes the preparation and antibacterial evaluation of a chitosan-based hydrogel physically cross-linked with poly(l-lactic-co-ɛ-caprolactone) (PLCL) and enriched with zinc oxide nanoparticles (ZnO NPs) and trace elements (potassium and magnesium). The material was developed as a scaffold with built-in antibacterial properties. Chitosan and PLCL are biocompatible support materials applied in medicine for the repair and regeneration of damaged tissues, objectives promoted by ZnO NPs and the aforementioned trace elements. The ZnO NPs were elaborated by chemical coprecipitation. The materials were characterized by XRD, FT-IR, and SEM. Antibacterial testing was performed with strains of Escherichia coli and Staphylococcus aureus by the Kirby-Bauer method, in accordance with the NCCLS and CLSI guidelines. It was possible to obtain a homogeneous hydrogel with adequate morphology and distribution of elements. The hydrogel with 300 mM of Mg, K, and ZnO NP’s showed antibacterial inhibition halos of 13 mm for S. aureus and 19 mm for E. coli. This innovative biomaterial with trace elements holds promise for tissue engineering by considering the challenge of bacterial infection.

Downloads

Download data is not yet available.

References

Serrato Ochoa D, Nieto Aguilar R, Aguilera Méndez A. Ingeniería de tejidos. Una nueva disciplina en medicina regenerativa. Investig Cienc [Internet]. 2015;23(64):61-69. Available from: https://www.redalyc.org/ar|ticulo.oa?id=67441039009

Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules [Internet]. 2019;9(11):750. Available from: https://doi.org/10.3390/biom9110750

Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res [Internet]. 2002;61(1):121-130. Available from: https://doi.org/10.1002/jbm.10145

Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm [Internet]. 2015;97(Part B):417-26. Available from: https://doi.org/10.1016/j.ejpb.2015.08.004

Ortega Cardona CE, Aparicio Fernández X. Quitosano: una alternativa sustentable para el empaque de alimentos. RDU [Internet]. 2020; 21(5):1-9. Available from: https://doi.org/10.22201/cuaieed.16076079e.2020.21.5.4

He Y, Liu W, Guan L, Chen J, et al. A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility. BioMed Res Int [Internet]. 2018;2018:5147156. Available from: https://doi.org/10.1155/2018/5147156

Spears JW, Engle TE. Feed Ingredients: Feed Supplements: Microminerals. Encyclopedia of Dairy Sciences [Internet]. 2011. 378-383. Available from: https://doi.org/10.1016/B978-0-08-100596-5.00760-5

Bhattacharya PT, Misra SR, Hussain M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica [Internet]. 2016;2016:5464373. Available from: https://doi.org/10.1155/2016/5464373

Silva CS, Moutinho CG, Vinha AF, Matos CM. Trace Minerals in Human Health: Iron, Zinc, Copper, Manganese and Fluorine. Int J Sci Res Methodol [Internet]. 2019;13(3):57-80. Available from: https://bdigital.ufp.pt/bitstream/10284/8105/1/5.Customer-IJSRM_HUMAN-13_8-19-27-08-2019%20%282%29.pdf

Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res [Internet]. 2017;5:17059. Available from: https://doi.org/10.1038/boneres.2017.59

Laurenti M, Cauda V. ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials [Internet]. 2017;7(11):374. Available from: https://doi.org/10.3390/nano7110374

Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter [Internet]. 2012;2(4):176-194. Available from: https://dx.doi.org/10.4161%2Fbiom.22905

Blanes JI, Clará A, Lozano F, Alcalá D, et al. Consensus document on the treatment of diabetic foot infections. Angiología [Internet]. 2012;64(1):31-59. Available from: https://doi.org/10.1016/j.angio.2011.11.001

National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents: approved guideline [Internet]. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999. Available from: https://webstore.ansi.org/preview-pages/CLSI/preview_M26-A.pdf

Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100 [Internet]. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Available from: https://file.qums.ac.ir/repository/mmrc/clsi%202017.pdf

Purwaningsih SY, Pratapa S, Triwikantoro, and Darminto. Nano-sized ZnO powders prepared by co-precipitation method with various pH. AIP Conf Proc [Internet]. 2016;1725:020063.1-020063.6. Available from: https://doi.org/10.1063/1.4945517

Colomer MT. Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. J Sol-Gel Sci Technol [Internet]. 2013;67:135-144. Available from: https://doi.org/10.1007/s10971-013-3059-9

Maldonado Lara K, Luna Bárcenas G, Luna Hernández E, Padilla Vaca, et al. Preparation and characterization of Copper Chitosan Nanocomposites with Antibacterial Activity for Applications in Tissue Engineering. Rev Mex Ing Biomed [Internet]. 2017;38(1):306-313. Available from: https://dx.doi.org/10.17488/RMIB.38.1.26

Varma R, Vasudevan S. Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus. ACS Omega [Internet]. 2020;5(32):20224−20230. Available from: https://doi.org/10.1021/acsomega.0c01903

Garkhal K, Verma S, Jonnalagadda S, Kumar N. Fast degradable poly(L-lactide-co-e-caprolactone) microspheres for tissue engineering: Synthesis, characterization, and degradation behavior. J Polym Sci A: Polym Chem [Internet]. 2007;45(13):2755–2764. Available from: https://doi.org/10.1002/pola.22031

Zavaleta EG, Saldaña JJ, Jáuregui RSR, Pacherrez GMD, et al. Antibacterial effect of ZnO nanoparticles on Staphylococcus aureus and Salmonella typhi. Arnaldoa [Internet]. 2019;26(1):421-432. Available from: http://www.scielo.org.pe/pdf/arnal/v26n1/a22v26n1.pdf

Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater [Internet]. 2001;3(7):643–646. Available from: https://doi.org/10.1016/S1466-6049(01)00197-0

Stautz J, Hellmich Y, Fuss MF, Silberberg JM, et al. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol [Internet]. 2021;433(16):166968. Available from: https://doi.org/10.1016/j.jmb.2021.166968

Published
2022-04-25
How to Cite
Salinas Delgado, Y. de los Ángeles, Soria Sánchez, S., Esquivel Barajas, G. G., Leos Quiñonez, E., & Bretado Aragón, L. A. (2022). A Chitosan-based Hydrogel with PLCL, ZnO NPs, and Oligoelements: A Promising Antibiotic Scaffold for Tissue Engineering. Mexican Journal of Biomedical Engineering, 43(1), 32-39. Retrieved from https://rmib.mx/index.php/rmib/article/view/1216
Section
Research Articles