Involvement of the Lung Parenchyma Analyzed by Frequency Components of the Tidal Volume Assessed by Electrical Bioimpedance




COPD, electrical impedance tomography, lungs, pulmonary function testing


Pulmonary function tests are vital for detecting pathologies, especially chronic obstructive pulmonary diseases (COPD), emphasizing the importance of assessing lung parenchyma involvement in maintaining proper gas exchange. Electrical impedance tomography (EIT) offers a non-invasive alternative for respiratory function evaluation while preserving natural breathing. We propose using EIT to detect lung parenchyma conditions by analyzing tidal volume patterns (by averaging the impedance image) in the frequency domain. Twenty COPD patients underwent simultaneous evaluation with a pneumotachometer and an EIT device, performing three 30-second respiratory maneuvers. FFT spectra analysis yielded parameters, including the area under the curve and quartiles (25 %, 50 %, 75 %) of power values in six frequency regions. Correlations between these parameters and clinical test results (pulmonary diffusing capacity and arterial blood gas analysis) revealed significant associations, particularly with PCO2. Multiple linear regression analysis predicted PCO2 with an R2adj = 0.827, suggesting the potential for non-invasively detecting lung parenchyma affectation by correlating FFT bioimpedance ventilatory patterns with gas exchange performance in COPD patients.


Download data is not yet available.


B. H. Culver, “Pulmonary function testing,” in Clinical Respiratory Medicine, S. G. Spiro, G. A. Silvestri, A. Agusti, Eds., Philadelphia, PA, United State: Elsevier, 2012, ch. 9, pp. 133-142.

A. Virani, S. Baltaji, M. Young, T. Dumont, T. Cheema, “Chronic Obstructive Pulmonary Disease: Diagnosis and GOLD Classification,” Crit. Care Nurs. Q., vol. 44, no. 1, pp. 9-18, Mar. 2021, doi:

Global Initiative for Chronic Obstructive Ling Disease. “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease.” Global Initiative for Chronic Obstructive Lung Disease. (accessed Sep. 28, 2023).

D. M. D. Halpin, G. J. Criner, A. Papi, D. Singh, et al., “Global Initiative for the Diagnosis, Management, and Prevention of Chronic Obstructive Lung Disease. The 2020 GOLD Science Committee Report on COVID-19 and Chronic Obstructive Pulmonary Disease,” Am. J. Resp. Crit. Care, vol. 203, no. 1, pp. 24-36, 2021, doi:

A. McGowan. “Recommendation from ERS Group 9.1 (Respiratory function technologists /Scientists) Lung function testing during COVID-19 pandemic and beyond.” ERS. (accessed Sep. 28, 2023).

M. C. McCormack, D. A. Kaminsky. “American Thoracic Society. Pulmonary function laboratories: Advice Regarding COVID-19.” American Thoracic Society. (accessed Sep. 16, 2023).

F. A. Escobar Revelo, V. H. Mosquera Leyton, C. F. Rengifo, “Electrical Impedance Tomography: Hardware Fundamentals And Medical Applications,” Ing. Solidar., vol. 16, no. 3, pp. 2-29, 2020, doi:

T. A. Khan, S. H. Ling, “Review on electrical impedance tomography: Artificial intelligence methods and its applications,” Algorithms, vol. 12, no. 5, pp. 70–88, 2019, doi:

P. Grasland-Mongrain, C. Lafon, “Review on Biomedical Techniques for Imaging Electrical Impedance,” IRBM, vol. 39, no. 4, pp. 243-250, 2018, doi:

Z. Wang, S. Yue, H. Wang, Y. Wang, “Data preprocessing methods for electrical impedance tomography: a review,” Physiol. Meas., vol. 41, no. 9, art. no. 09TR02, 2020, doi:

Z. Zong, Y. Wang, Z. Wei, “A Review of Algorithms and Hardware Implementations in Electrical Impedance Tomography,” Prog. Electromagn. Res., vol. 169, pp. 59-71, 2020, doi:

S. Yuan, H. He, Y. Long, Y. Chi, I. Frerichs, Z. Zhao, “Rapid dynamic bedside assessment of pulmonary perfusion defect by electrical impedance tomography in a patient with acute massive pulmonary embolism,” Pulm. Circ., vol. 11, no. 1, pp. 1–3, 2021, doi:

H. He, Y. Long, I. Frerichs, Z. Zhao, “Detection of acute pulmonary embolism by electrical impedance tomography and saline bolus injection,” Am. J. Resp. Crit. Care., vol. 202, no. 6, pp. 881-882, 2020, doi:

E. Krauss, D. van der Beck, I. Schmalz, J. Wilhelm, et al., “Evaluation of Regional Pulmonary Ventilation in Spontaneously Breathing Patients with Idiopathic Pulmonary Fibrosis (IPF) Employing Electrical Impedance Tomography (EIT): A Pilot Study from the European IPF Registry (eurIPFreg),” J. Clin. Med., vol. 10, no. 2, art. no. 192, 2021, doi:

M. Proença, F. Braun, M. Lemay, J. Solà, et al., “Non-invasive pulmonary artery pressure estimation by electrical impedance tomography in a controlled hypoxemia study in healthy subjects,” Sci. Rep., vol. 10, art. no. 21462, 2020, doi:

W. Onland, J. Hutten, M. Miedema, L. D. Bos, P. Brinkman, A. H. Maitland-van der Zee, A. H. van Kaam, “Precision Medicine in Neonates: Future Perspectives for the Lung,” Front. Pediatr., vol. 8, pp. 732-742, 2020, doi:

R. Cornejo, P. Iturrieta, T. M. Olegário, C. Kajiyama, et al., “Estimation of changes in cyclic lung strain by electrical impedance tomography: Proof‐of‐concept study,” Acta Anaesth. Scand., vol. 65, no. 2, pp. 228-235, 2021, doi:

A. Rara, K. Roubik, T. Tyll, “Effects of pleural effusion drainage in the mechanically ventilated patient as monitored by electrical impedance tomography and end-expiratory lung volume: A pilot study,” J. Crit. Care, vol. 59, pp. 76-80, 2020, doi:

S. Milne, J. Huvanandana, C. Nguyen, J. M. Duncan, et al., “Time-based pulmonary features from electrical impedance tomography demonstrate ventilation heterogeneity in chronic obstructive pulmonary disease,” J. Appl. Physiol., vol. 127, no. 5, pp. 1441-1452, 2019, doi:

C. Karagiannidis, A. D. Waldmann, P. L. Róka, T. Schreiber, S. Strassmann, W. Windisch, S. H. Böhm, “Regional expiratory time constants in severe respiratory failure estimated by electrical impedance tomography: a feasibility study,” Crit. Care, vol. 22, no. 1, art. no. 221, 2018, doi:

B. Vogt, Z. Zhao, P. Zabel, N. Weiler, I. Frerichs, “Regional lung response to bronchodilator reversibility testing determined by electrical impedance tomography in chronic obstructive pulmonary disease,” Am. J. Physiol Lung Cell Mol. Physiol., vol. 311, no. 1, pp. L8-L19, 2016, doi:

B. De Lema, P. Casan, P. Riu, “Electrical impedance tomography: standardizing in the procedure in pneumology,” Arch. Bronconeumol., vol. 42, pp. 299–301, 2006, doi:

J. Fornos Herrando, “Estimació del Patró Ventilatori mitjanc¸ ant Tomografía d’Impedància Elèctrica,” Bachelors dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 2006.

D. B. Geselowitz, “An application of electrocardiographic lead theory to impedance plethysmography,” IEEE Trans. Biomed. Eng., vol. BME-18, no. 1, pp. 38-41, 1971, doi:

O. Casas, “Contribución a la obtención de imágenes paramétricas en tomografía de impedancia eléctrica para la caracterización de tejidos biológicos,” Ph.D. dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 1998.

A. Fontova, “Desenvolupament d’un mòdul de comunicacions Ethernet per a un sistema de TIE,” Bachelors dissertation, Universitat Politècnica de Catalunya, Cataluña, Spain, 2004.

R. E. Serrano, B. De Lema, O. Casas, T. Feixas, et al., “Use of electrical impedance tomography (TIE) for the assessment of unilateral pulmonary function,” Physiol. Meas., vol. 23, art. no. 211, 2002, doi:

O. Casas, J. Rosell, R. Bragós, A. Lozano, P. J. Riu, “A parallel broadband real-time system for electrical impedance tomography,” Physiol. Meas., vol. 17, art. no. A1, 1996, doi:

MedGraphics Products. “Technical specifications.” MedGraphics Products. (accessed Sept. 7, 2023).

J. Vestbo, S. S. Hurd, A. G. Agustí, P. W. Jones, et al., “Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary,” Am. J. Resp. Crit. Care, vol. 187, no. 4, pp. 347-365, 2013, doi:

G. Ntritsos, J. Franek, L. Belbasis, M. A. Christou, et al., “Gender-specific estimates of COPD prevalence: a systematic review and meta-analysis,” Int. J. Chronic Obstr., vol. 13, pp. 1507-1514, 2018, doi:

P. P. Rickham, “Human experimentation. Code of ethics of the world medical association. Declaration of Helsinki,” Brit. Med. J., vol. 2, no. 5402, art. no. 177, 1964, doi:

F. García-Río, M. Calle, F. Burgos, P. Casan, et al., “Espirometría,” Arch. Bronconeumol., vol. 49, no. 9, pp. 388-401, 2013, doi:

J. M. Haynes, “Basic spirometry testing and interpretation for the primary care provider,” Can. J. Respir. Ther., vol. 54, no. 4, pp. 92-98, 2018, doi :

J. A. Neder, S. Andreoni, A. Castelo-Filho, L. E. Nery, “Reference values for lung function tests: I. Static volumes,” Braz. J. Med. Biol. Res., vol, 32, no. 6, pp. 703-717, 1999, doi:

N. Macintyre, R. O. Crapo, G. Viegi, D. C. Johnson, et al., “Standardization of the single breath determination of carbon monoxide uptake in the lung,” Eur. Respir. J., vol. 26, pp. 720-735, 2005, doi:

L. Gattinoni, A. Pesenti, M. Matthay, Understanding blood gas analysis, Intens. Care Med. vol. 44, no. 1, pp. 91-93, 2018, doi:

M. Balleza-Ordaz, E. Alday-Perez, M. Vargas-Luna, S. Kashina, M. R. Huerta-Franco, L. A. Torres-González, P. J. Riu-Costa, “Tidal volume monitoring by a set of tetrapolar impedance measurements selected from the 16-electrodes arrangement used in electrical impedance tomography (EIT) technique. Calibration equations in a group of healthy males,” Biomed. Signal Process. Control, vol. 27, pp. 68-76, 2016, doi:

M. Balleza-Ordaz, R. Estrella-Cerón, T. Romero-Muñiz, M. Vargas-Luna, “Lung ventilation monitoring by electrical bioimpedance technique using three different 4-electrode thoracic configurations: Variability of calibration equations,” Biomed. Signal Process. Control, vol. 47, pp. 401-412, 2019, doi:

J. Karsten, T. Stueber, N. Voigt, E. Teschner, H. Heinze, “Influence of different electrode belt positions on electrical impedance tomography imaging of regional ventilation: a prospective observational study,” Crit. Care, vol. 20, art. no. 3, 2015, doi:

S. Krueger-Ziolek, B. Schullcke, J. Kretschmer, U. Müller-Lisse, K. Möller, Z. Zhao, “Positioning of electrode plane systematically influences EIT imaging,” Physiol. Meas., vol. 36, art. no. 1109, 2015, doi:

E. Szczygieł, K. Zielonka, S. Mętel, J. Golec, “Musculo-skeletal and pulmonary effects of sitting position–a systematic review,” Ann. Agric. Environ. Med., vol. 24, no. 1, pp. 8-12, 2017,

S. W. Smith, The Scientist and Engineer’s Guide to Digital Signal Processing, 2nd ed., San Diego, CA, USA: California Technical Publishing, 1999.

M. Weeks, Digital signal processing using MATLAB and wavelets, 1st ed., Hingham, MA, USA: Infinity Science Press LLC, 2007.

M. Ghita, D. Copot, M. Ghita, E. Derom, C. Ionescu, “Low Frequency Forced Oscillation Lung Function Test Can Distinguish Dynamic Tissue Non-linearity in COPD Patients,” Front. Physiol., vol. 10, art. no.1390, 2019, doi:




How to Cite

Vargas Luna, F. M., Delgadillo Cano, M. I., Riu Costa, P. J., Kashina, S., & Balleza Ordaz, J. M. (2024). Involvement of the Lung Parenchyma Analyzed by Frequency Components of the Tidal Volume Assessed by Electrical Bioimpedance. Revista Mexicana De Ingenieria Biomedica, 45(2), 23–34.



Research Articles

Dimensions Citation

Most read articles by the same author(s)