Low-Cost Portable Pupilometer for Circadian Rhythm Studies

Authors

DOI:

https://doi.org/10.17488/RMIB.45.3.4

Keywords:

biomedical instrumentation, circadian rhythms, pupillometry

Abstract

Given the price tag of commercially available devices, developing a low-cost, portable pupilometer based on the Raspberry Pi platform is significant for advancing clinical and research applications in neurology and circadian rhythm studies. This study aimed to design and characterize a pupilometer capable of assessing pupillary light response (PLR) to different wavelengths and its relationship with circadian cycles. Using a Raspberry Pi, a no-infrared filter (NoIR) camera, and custom software, the device was tested on a healthy 24-year-old female subject over 20 days, measuring responses to 635 nm (red) and 463 nm (blue) light stimuli at two daily intervals (8:00 AM and 8:00 PM) in both eyes. Results showed that blue light induced greater pupillary constriction than red light (F(1)= 284.37, p=6.9e-27), with more pronounced responses in the morning (F(1)=12.02, p=0.001), likely due to higher parasympathetic activity. Significant lateral asymmetry (F(1)=12.36, p=0.0008) was also observed in the pupillary response to blue light, suggesting potential intracranial factors. These findings demonstrate the pupilometer's efficacy in capturing detailed pupillary dynamics, proposing its utility to evaluate pupillary light response in connection with circadian rhythms and lateral asymmetry, providing an affordable solution.

Downloads

Download data is not yet available.

References

S. Mathôt, “Pupillometry: Psychology, Physiology, and Function,” J. Cogn., vol. 1, no. 1, 2018, art. no. 16, doi: https://doi.org/10.5334/joc.18

D. F. Ferreira, S. Ferreira, C. Mateus, N. Barbosa-Rocha, L. Coelho, and M. A. Rodrigues, “Advancing the understanding of pupil size variation in occupational safety and health: A systematic review and evaluation of open-source methodologies,” Saf. Sci., vol. 175, 2024, art. no. 106490, doi: https://doi.org/10.1016/j.ssci.2024.106490

H. M. Pinheiro and R. M. da Costa, “Pupillary Light Reflex as a Diagnostic Aid from Computational Viewpoint: A Systematic Literature Review,” J. Biomed. Inform., vol. 117, 2021, art. no. 103757, doi: https://doi.org/10.1016/j.jbi.2021.103757

M. Okubo, K. Ishikawa, T. Oyama, and Y. Tanaka, “The look in your eyes: The role of pupil dilation in disguising the perception of trustworthiness,” J. Trust Res., vol. 13, no. 1, pp. 87–97, 2023, doi: https://doi.org/10.1080/21515581.2023.2165090

J. G. Cárdenas-Solís, D. A. Gutiérrez Hernández, E. Guevara, R. Santiago-Montero, et al., “Polynomial Approximation of Time Series of Pupil Response to Controlled Light Stimuli,” J. Adv. Comput., vol. 7, no. 1, pp. 1–10, 2017, doi: https://doi.org/10.5923/j.ac.20170701.01

M. T. Galván-González, V. Zamudio, C. Lino, J. G. Cárdenas Solís, et al., “Analysis of pupillary response after a stimulus of light to generate characteristical groups,” in 2017 International Conference on Electronics, Communications and Computers (CONIELECOMP), Cholula, Mexico, 2017, pp. 1–6, doi: https://doi.org/10.1109/CONIELECOMP.2017.7891817

L.-L. Lobato-Rincón, M. del C. Cabanillas-Campos, C. Bonnin-Arias, E. Chamorro-Gutiérrez, A. Murciano-Cespedosa, and C. Sánchez-Ramos Roda, “Pupillary behavior in relation to wavelength and age,” Front. Hum. Neurosci., vol. 8, 2014, art. no. 221, doi: https://doi.org/10.3389/fnhum.2014.00221

C. M. Privitera, S. V. Neerukonda, V. Yokobori, A. M. Puccio, et al., “A differential of the left eye and right eye neurological pupil index is associated with discharge modified Rankin scores in neurologically injured patients,” BMC Neurol., vol. 22, no. 1, 2022, art. no. 273, doi: https://doi.org/10.1186/s12883-022-02801-3

M. A. Bonmati-Carrion, K. Hild, C. Isherwood, S. J. Sweeney, et al., “Relationship between Human Pupillary Light Reflex and Circadian System Status,” PLoS One, vol. 11, no. 9, 2016, art. no. e0162476, doi: https://doi.org/10.1371/journal.pone.0162476

M. Münch, L. Léon, S. V. Crippa, and A. Kawasaki, “Circadian and wake-dependent effects on the pupil light reflex in response to narrow-bandwidth light pulses,” Invest. Ophthalmol. Vis. Sci., vol. 53, no. 8, pp. 4546–4555, 2012, doi: https://doi.org/10.1167/iovs.12-9494

E. Guevara, M. Miranda-Morales, K. Hernández-Vidales, M. Atzori, and F. J. González, “Low-cost embedded system for optical imaging of intrinsic signals,” Rev. Mex. Fis., vol. 65, no. 6, pp. 651–657, 2019, doi: https://doi.org/10.31349/RevMexFis.65.651

K. Tekin, M. A. Sekeroglu, H. Kiziltoprak, S. Doguizi, M. Inanc, and P. Yilmazbas, “Static and dynamic pupillometry data of healthy individuals,” Clin. Exp. Optom., vol. 101, no. 5, pp. 659–665, 2018, doi: https://doi.org/10.1111/cxo.12659

K. Herbst, B. Sander, D. Milea, H. Lund-Andersen, and A. Kawasaki, “Test–Retest Repeatability of the Pupil Light Response to Blue and Red Light Stimuli in Normal Human Eyes Using a Novel Pupillometer,” Front. Neurol., vol. 2, 2011, art. no. 10, doi: https://doi.org/10.3389/fneur.2011.00010

R. Kardon, S. C. Anderson, T. G. Damarjian, E. M. Grace, E. Stone, and A. Kawasaki, “Chromatic pupil responses: preferential activation of the melanopsin-mediated versus outer photoreceptor-mediated pupil light reflex,” Ophthalmology, vol. 116, no. 8, pp. 1564–1573, 2009, doi: https://doi.org/10.1016/j.ophtha.2009.02.007

N. M. Razali and Y. B. Wah, “Power comparisons of shapiro-wilk, kolmogorov-smirnov, lilliefors and anderson-darling tests,” JOSMA, vol. 2, no. 1, pp. 21–33, 2011.

D. J. Steinskog, D. B. Tjøstheim, and N. G. Kvamstø, “A Cautionary Note on the Use of the Kolmogorov–Smirnov Test for Normality,” Mon. Wea. Rev., vol. 135, no. 3, pp. 1151–1157, 2007, doi: https://doi.org/10.1175/MWR3326.1

Y. Zhao, L. Wong, and W. W. B. Goh, “How to do quantile normalization correctly for gene expression data analyses,” Sci Rep, vol. 10, 2020, art. no. 15534, doi: https://doi.org/10.1038/s41598-020-72664-6

S. Lee and D. K. Lee, “What is the proper way to apply the multiple comparison test?,” Korean J. Anesthesiol., vol. 71, no. 5, pp. 353–360, 2018, doi: https://doi.org/10.4097/kja.d.18.00242

M. Grueschow, N. Stenz, H. Thörn, U. Ehlert, et al., “Real-world stress resilience is associated with the responsivity of the locus coeruleus,” Nat. Commun., vol. 12, no. 1, 2021, art. no. 2275, doi: https://doi.org/10.1038/s41467-021-22509-1

A. V. Rukmini, D. Milea, M. Baskaran, A. C. How, et al., “Pupillary Responses to High-Irradiance Blue Light Correlate with Glaucoma Severity,” Ophthalmology, vol. 122, no. 9, pp. 1777–1785, 2015, doi: https://doi.org/10.1016/j.ophtha.2015.06.002

M. H. Lee, B. Mitra, J. K. Pui, and M. Fitzgerald, “The use and uptake of pupillometers in the Intensive Care Unit,” Aust. Crit. Care, vol. 31, no. 4, pp. 199–203, 2018, doi: https://doi.org/10.1016/j.aucc.2017.06.003

IDEMD. “Pupillometry - NeuroLight.” IDMED Accessed: Aug. 18, 2024. [Online]. Available: https://www.idmed.fr/en/pupillometry/

NEUROPTICS. “Measure Pupil Size with NPi-300 Pupillometer,” NeurOptics. Accessed: Aug. 18, 2024. [Online]. Available: https://neuroptics.com/npi-300-pupillometer/

Downloads

Published

2024-11-09

How to Cite

Guevara, E., & Hernández-Barrios, I. A. (2024). Low-Cost Portable Pupilometer for Circadian Rhythm Studies. Revista Mexicana De Ingenieria Biomedica, 45(3), 68–79. https://doi.org/10.17488/RMIB.45.3.4

Issue

Section

Research Articles

Dimensions Citation