A multiple-filter-GA-SVM method for dimension reduction and classification of DNA-microarry data
Abstract
The following article proposes a Multiple-Filter by using a genetic algorithm (GA) combined with a support vector machine (SVM) for gene selection and classification of DNA microarray data. The proposed method is designed to select a subset of relevant genes that classify the DNA-microarray data more accurately. First, three traditional statistical methods are used for gene selection. Then different relevant gene subsets are selected by using a GA/SVM framework using leave-one-out cross validation (LOOCV) to avoid data overfitting. A gene subset (niche), consisting of relevant genes, is obtained from each statistical method, by analyzing the frequency of each gene in the different gene subsets. Finally, the most frequent genes contained in the niche, are evaluated by the GA/SVM to obtain a final relevant gene subset. The proposed method is tested in two DNA-microarray datasets: Leukemia and colon. In the experimental results it is observed that the Multiple-Filter-GA-SVM (MF-GA-SVM) work very well by achieving lower classification error rates using a smaller number of selected genes than other methods reported in the literature.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.