Efectos electrocinéticos de células biológicas y partículas coloidales en la espectroscopia dieléctrica a bajas frecuencias
Abstract
The manipulation of nanometer-size biological cells or macromolecules (e.g. DNA) is an essential approach in recent nanotechnology, -hydride of biology, chemistry, and engineering-, which pretends the assembly of functional bionanostructures by means of a mechanical positioning of its components. On the other hand, provides the manipulation of these objects for a biomedical analysis and size separation into certain populations. Electrokinetic techniques at low frequency allow studying aggregation, rotation, deformation, and orientation, including manipulation, of small single objects in a wide frequency range between 1 Hz up to several MHz. The physics behind these techniques is based on impedance properties of particles or cells in suspension. The electrokinetic effects are consequence of the interaction between an incident electric a.c.-field and the induced dipole moment of the dielectric objects. In the present paper, we outline physical aspects behind different electrokinetic methods. The advanced state of lithographic techniques allows making microchambers suitable for both biochemical investigation and medical diagnostics. In particular point research activities in this field toward the fabrication of biosensors in a wide range of applications, including the integration of different biomedical and biochemical analysis aspects within a single “lab-on-a-chip”.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.