Electrochemistry in Medicine: Graphene and Celular Electrostimulation
DOI:
https://doi.org/10.17488/RMIB.45.2.8Keywords:
electrostimulation, electrochemistry, grapheneAbstract
The use of cellular electrostimulation in medicine has been an increasingly growing area of interest, and graphene has emerged as a promising material in this field. This article explores how cellular electrostimulation can influence key biological processes and how graphene, with its unique properties, can enhance this technique. The electrochemical aspects of the graphene-cell interaction and its impact on cellular activity regulation were investigated. Additionally, various applications of graphene in cellular electrostimulation, from tissue engineering to disease treatment were examined. This article provides a comprehensive insight into how the combination of electrochemistry and graphene is transforming the field of regenerative medicine.
Downloads
References
C. Chen, X. Bai, Y. Ding, I.-S. Lee, “Electrical stimulation as a novel tool for regulating cell behavior in tissue engineering,” Biomater. Res., vol. 23, 2019, art. no. 25, doi: https://doi.org/10.1186/s40824-019-0176-8
R. Vaiciuleviciute, I. Uzieliene, P. Bernotas, V. Novickij, A. Alaburda, E. Bernotiene, “Electrical Stimulation in Cartilage Tissue Engineering,” Bioengineering, vol. 10, no. 4, 2023, art. no. 454, doi: https://doi.org/10.3390/bioengineering10040454
A. Diamant, J. P. Reilly, Electrostimulation: theory, applications and computational model. Norwood, MA, Estados Unidos, Artech House, 2011.
B. C. Thompson, E. Murray, G. G. Wallace, “Graphite Oxide to Graphene. Biomaterials to Bionics,” Adv. Mater., vol. 27, no. 46, pp. 7563–7582, 2015, doi: https://doi.org/10.1002/adma.201500411
L. Leppik, K. M. C. Oliveira, M. B. Bhavsar, J. H. Barker, “Electrical stimulation in bone tissue engineering treatments,” Eur. J. Trauma Emerg. Surg., vol. 46, no. 2, pp. 231–244, 2020, doi: https://doi.org/10.1007/s00068-020-01324-1
Z. Zhou, J. Zheng, X. Meng, F. Wang, “Effects of Electrical Stimulation on Articular Cartilage Regeneration with a Focus on Piezoelectric Biomaterials for Articular Cartilage Tissue Repair and Engineering,” Int. J. Mol. Sci., vol. 24, no. 3, 2023, art. no. 1836, doi: https://doi.org/10.3390/ijms24031836
Z. Du, C. Wang, R. Zhang, X. Wang, X. Li, “Applications of Graphene and Its Derivatives in Bone Repair: Advantages for Promoting Bone Formation and Providing Real-Time Detection, Challenges and Future Prospects,” Int. J. Nanomedicine, vol. 15, pp. 7523–7551, 2020, doi: https://doi.org/10.2147/ijn.s271917
N. Jalilinejad, M. Rabiee, N. Baheiraei, R. Ghahremanzadeh, et al., “Electrically conductive carbon‐based (bio)‐nanomaterials for cardiac tissue engineering,” Bioeng. Transl. Med., vol. 8, no. 1, 2023, art. no. e10347, doi: https://doi.org/10.1002/btm2.10347
C. Fu, S. Pan, Y. Ma, W. Kong, Z. Qi, X. Yang, “Effect of electrical stimulation combined with graphene-oxide-based membranes on neural stem cell proliferation and differentiation,” Artif. Cells Nanomed. Biotechnol., vol. 47, no. 1, pp. 1867–1876, 2019, doi: https://doi.org/10.1080/21691401.2019.1613422
K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, “A roadmap for graphene,” Nature, vol. 490, no. 7419, pp. 192–200, 2012, doi: https://doi.org/10.1038/nature11458
D. G. Papageorgiou, I. A. Kinloch, R. J. Young, “Mechanical properties of graphene and graphene-based nanocomposites,” Prog. Mater. Sci., vol. 90, pp. 75–127, 2017, doi: https://doi.org/10.1016/j.pmatsci.2017.07.004
A. Ambrosi, C. K. Chua, A. Bonanni, M. Pumera, “Electrochemistry of Graphene and Related Materials,” Chem. Rev., vol. 114, no. 14, pp. 7150–7188, 2014, doi: https://doi.org/10.1021/cr500023c
M.-H. Tran, I. Booth, A. Azarakhshi, P. Berrang, J. Wulff, A. G. Brolo, “Synthesis of Graphene and Graphene Films with Minimal Structural Defects,” ACS Omega, vol. 8, no. 43, pp. 40387–40395, 2023, doi: https://doi.org/10.1021/acsomega.3c04788
D. A. C. Brownson, C. E. Banks, The Handbook of Graphene Electrochemistry. London: Springer London, 2014. doi: https://doi.org/10.1007/978-1-4471-6428-9
A. Raslan, L. Saenz del Burgo, J. Ciriza, J. L. Pedraz, “Graphene oxide and reduced graphene oxide-based scaffolds in regenerative medicine,” Int. J. Pharm., vol. 580, 2020, art. no. 119226, doi: https://doi.org/10.1016/j.ijpharm.2020.119226
M. Hoseini-Ghahfarokhi, S. Mirkiana, N. Mozaffari, M. A. Abdolahi Sadatu, et al., “Applications of Graphene and Graphene Oxide in Smart Drug/Gene Delivery: Is the World Still Flat?,” Int. J. Nanomedicine, vol. 15, pp. 9469–9496, 2020, doi: https://doi.org/10.2147/ijn.s265876
P. Zare, M. Aleemardani, A. Seifalian, Z. Bagher, A. M. Seifalian, “Graphene Oxide: Opportunities and Challenges in Biomedicine,” Nanomaterials, vol. 11, no. 5, 2021, art. no. 1083, doi: https://doi.org/10.3390/nano11051083
Y. Wu, K. A. Jenkins, A. Valdes-Garcia, D. B. Farmer, et al., “State-of-the-Art Graphene High-Frequency Electronics,” Nano Lett., vol. 12, no. 6, pp. 3062–3067, 2012, doi: https://doi.org/10.1021/nl300904k
J. Yang, A. A. Papaderakis, J. S. Keerthi, R. W. Adams, et al., “Measuring the Capacitance of Carbon in Ionic Liquids: From Graphite to Graphene,” J. Phys. Chem. C Nanomater. Interfaces, vol. 128, no. 9, pp. 3674–3684, 2024, doi: https://doi.org/10.1021/acs.jpcc.3c08269
S. Lee, T. Eom, M.-K. Kim, S.-G. Yang, B. S. Shim, “Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT:PSS / graphene oxide composites,” Electrochim. Acta, vol. 313, pp. 79–90, 2019, doi: https://doi.org/10.1016/j.electacta.2019.04.099
X. Zhang, T. Wang, Z. Zhang, H. Liu, L. Li, et al., “Electrical stimulation system based on electroactive biomaterials for bone tissue engineering,” Mater. Today, vol. 68, pp. 177–203, 2023, doi: https://doi.org/10.1016/j.mattod.2023.06.011
A.-R. Siddiqui, J. N'Diaye, K. Martin, A. Baby, J. Dawlaty, V. Augustyn, J. Rodríguez-López, “Monitoring SEIRAS on a Graphitic Electrode for Surface-Sensitive Electrochemistry: Real-Time Electrografting,” Anal. Chem., vol. 96, no. 6, pp. 2435–2444, 2024, doi: https://doi.org/10.1021/acs.analchem.3c04407
H. Park, S. Zhang, A. Steinman, Z. Chen, H. Lee, “Graphene prevents neurostimulation-induced platinum dissolution in fractal microelectrodes,” 2D Mater., vol. 6, no. 3, 2019, art. no. 035037, doi: https://doi.org/10.1088/2053-1583/ab2268
V. Palmieri, F. Sciandra, M. Bozzi, M. De Spirito, M. Papi, “3D Graphene Scaffolds for Skeletal Muscle Regeneration: Future Perspectives,” Front. Bioeng. Biotechnol., vol. 8, 2020, art. no. 383, doi: https://doi.org/10.3389/fbioe.2020.00383
X. Xu, H. Zhang, Y. Yan, J. Wang, L. Guo, “Effects of electrical stimulation on skin surface,” Acta Mech. Sin., vol. 37, no. 12, pp. 1843–1871, 2021, doi: https://doi.org/10.1007/s10409-020-01026-2
W. Wang, J. R. Passarini Junior, P. R. Lopes Nalesso, D. Musson, et al., “Engineered 3D printed poly(ɛ-caprolactone)/graphene scaffolds for bone tissue engineering,” Mater. Sci. Eng. C, vol. 100, pp. 759–770, 2019, doi: https://doi.org/10.1016/j.msec.2019.03.047
J. Li, X. Liu, J. M. Crook, G. G. Wallace, “Electrical stimulation-induced osteogenesis of human adipose derived stem cells using a conductive graphene-cellulose scaffold,” Mater. Sci. Eng. C, vol. 107, 2020, art. no. 110312, doi: https://doi.org/10.1016/j.msec.2019.110312
C. Dong, F. Qiao, W. Hou, L. Yang, Y. Lv, “Graphene-based conductive fibrous scaffold boosts sciatic nerve regeneration and functional recovery upon electrical stimulation,” Appl. Mater. Today, vol. 21, 2020, art. no. 100870, doi: https://doi.org/10.1016/j.apmt.2020.100870
F. Zheng, R. Li, Q. He, K. Koral, et al., “The electrostimulation and scar inhibition effect of chitosan/oxidized hydroxyethyl cellulose/reduced graphene oxide/asiaticoside liposome based hydrogel on peripheral nerve regeneration in vitro,” Mater. Sci. Eng. C Mater. Biol. Appl., vol. 109, 2020, art. no. 110560, doi: https://doi.org/10.1016/j.msec.2019.110560
A. Kamalov, M. Shishov, N. Smirnova, V. Kodolova-Chukhontseva, et al., “Influence of Electric Field on Proliferation Activity of Human Dermal Fibroblasts,” J. Funct. Biomater., vol. 13, no. 3, 2022, art. no. 89, doi: https://doi.org/10.3390/jfb13030089
H. Bei, Y. Yang, Q. Zhang, Y. Tian, X. Luo, M. Yang, X. Zhao, “Graphene-Based Nanocomposites for Neural Tissue Engineering,” Molecules, vol. 24, no. 4, 2019, art. no. 658, doi: https://doi.org/10.3390/molecules24040658
M. Aleemardani, P. Zare, A. Seifalian, Z. Bagher, A. M. Seifalian, “Graphene-Based Materials Prove to Be a Promising Candidate for Nerve Regeneration Following Peripheral Nerve Injury,” Biomedicines, vol. 10, no. 1, 2021, art. no. 73, doi: https://doi.org/10.3390/biomedicines10010073
A. M. Lozano, N. Lipsman, H. Bergman, P. Brown, et al., “Deep brain stimulation: current challenges and future directions,” Nat. Rev. Neurol., vol. 15, no. 3, pp. 148–160, 2019, doi: https://doi.org/10.1038/s41582-018-0128-2
T. Oz, A. K. Kaushik, M. Kujawska, “Advances in graphene-based nanoplatforms and their application in Parkinson’s disease,” Mater. Adv., vol. 4, no. 24, pp. 6464–6477, 2023, doi: https://doi.org/10.1039/D3MA00623A
R. Fabbri, E. Saracino, E. Treossi, R. Zamboni, V. Palermo, V. Benfenati, “Graphene glial-interfaces: challenges and perspectives,” Nanoscale, vol. 13, no. 8, pp. 4390–4407, 2021, doi: https://doi.org/10.1039/D0NR07824G
F. B. Rodrigues, G. S. Duarte, D. Prescott, J. Ferreira, J. Costa, “Deep brain stimulation for dystonia,” Cochrane Database Syst. Rev., no. 1, 2019, art. no. CD012405, doi: https://doi.org/10.1002/14651858.cd012405.pub2
T. Ha, S. Park, M. Shin, J.-Y. Lee, J.-H. Choi, J.-W. Choi, “Biosensing system for drug evaluation of amyotrophic lateral sclerosis based on muscle bundle and nano-biohybrid hydrogel composed of multiple motor neuron spheroids and carbon nanotubes,” Chem. Eng. J., vol. 463, 2023, art. no. 142284, doi: https://doi.org/10.1016/j.cej.2023.142284
P. Limousin, T. Foltynie, “Long-term outcomes of deep brain stimulation in Parkinson disease,” Nat. Rev. Neurol., vol. 15, no. 4, pp. 234–242, 2019, doi: https://doi.org/10.1038/s41582-019-0145-9
G. Xiao, Y. Song, Y. Zhang, H. Zhao, et al., “Microelectrode Arrays Modified with Nanocomposites for Monitoring Dopamine and Spike Firings under Deep Brain Stimulation in Rat Models of Parkinson’s Disease,” ACS Sensors, vol. 4, no. 8, pp. 1992–2000, 2019, doi: https://doi.org/10.1021/acssensors.9b00182
S. Zhao, G. Li, C. Tong, W. Chen, et al., “Full activation pattern mapping by simultaneous deep brain stimulation and fMRI with graphene fiber electrodes,” Nat. Commun., vol. 11, no. 1, 2020, art. no. 1788, doi: https://doi.org/10.1038/s41467-020-15570-9
S. Nimbalkar, S. Sameji,a, V. Dang, T. Hunt, O. Nunez, C. Moritz, S. Kassegne, “Graphene on glassy carbon microelectrodes demonstrate long-term structural and functional stability in neurophysiological recording and stimulation,” J. Neural Eng., vol. 18, no. 5, 2021, art. no. 056035, doi: https://doi.org/10.1088/1741-2552/ac245a
B. Xu, J. Pei, L. Feng, X.-D. Zhang, “Graphene and graphene-related materials as brain electrodes,” J. Mater. Chem. B, vol. 9, no. 46, pp. 9485–9496, 2021, doi: https://doi.org/10.1039/D1TB01795K
R. Kumar, R. Rauti, D. Scaini, M. Antman-Passig, et al., “Graphene‐Based Nanomaterials for Neuroengineering: Recent Advances and Future Prospective,” Adv. Funct. Mater., vol. 31, no. 46, 2021, art. no. 2104887, doi: https://doi.org/10.1002/adfm.202104887
Ł. Dybowska-Sarapuk, W. Sosnowicz, A. Grzeczkowicz, J. Krzemiński, and M. Jakubowska, “Ultrasonication effects on graphene composites in neural cell cultures,” Front. Mol. Neurosci., vol. 15, 2022, art. no. 992494, doi: https://doi.org/10.3389/fnmol.2022.992494
J. Maughan, P. J. Gouveia, J. Gutierrez Gonzalez, L. M. Leahy, et al., “Collagen/pristine graphene as an electroconductive interface material for neuronal medical device applications,” Appl. Mater. Today, vol. 29, 2022, art. no. 101629, doi: https://doi.org/10.1016/j.apmt.2022.101629
A. X. Mendes, A. Teixeira do Nascimento, S. Duchi, A. F. Quigley, et al., “The impact of electrical stimulation protocols on neuronal cell survival and proliferation using cell-laden GelMA/graphene oxide hydrogels,” J. Mater. Chem. B, vol. 11, no. 3, pp. 581–593, 2023, doi: https://doi.org/10.1039/D2TB02387C
D. Viana, S. T. Watson, E. Masvidal-Codina, X. Illa, et al., “Nanoporous graphene-based thin-film microelectrodes for in vivo high-resolution neural recording and stimulation,” Nat. Nanotechnol., no. 4, pp. 514-523, 2024, doi: https://doi.org/10.1038/s41565-023-01570-5
L. Dybowska-Sarapuk, W. Sosnowicz, J. Krzeminski, A. Grzeczkowicz, L. H. Granicka, A. Kotela, M. Jakubowska, “Printed Graphene Layer as a Base for Cell Electrostimulation—Preliminary Results,” Int. J. Mol. Sci., vol. 21, no. 21, 2020, art. no. 7865, doi: https://doi.org/10.3390/ijms21217865
A. F. Rodrigues, A. P. M. Tavares, S. Simões, R. P. F. F. Silva, et al., “Engineering graphene-based electrodes for optical neural stimulation,” Nanoscale, vol. 15, no. 2, pp. 687–706, 2023, doi: https://doi.org/10.1039/D2NR05256C
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2024 Revista Mexicana de Ingenieria Biomedica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.