Automatic detection of generalized anxiety disorder: a life history strategy approach
DOI:
https://doi.org/10.17488/RMIB.46.SI-TAIH.1528Keywords:
classification, generalized anxiety disorder, life history strategies, machine learningAbstract
This article presents a model for detecting generalized anxiety disorder (GAD) using supervised machine learning algorithms. A total of 244 records were analyzed, obtained through four questionnaires that assessed sociodemographic aspects, life history strategies, and anxiety levels. From these data, a subset of relevant features was selected, eight supervised algorithms were evaluated, and their hyperparameters were optimized. The XGBoost model showed the best performance in both unbalanced models and those using class balancing techniques. The results highlight the relevance of life history strategies as predictive variables, particularly in dimensions such as interpersonal relationships, early maturation, and impulsivity, which showed a significant association with the development of GAD. The main limitations of the study include the sample size and the focus on a population located in central Mexico. Nevertheless, the findings confirm the feasibility of integrating life history variables into predictive models of GAD. The XGBoost model implementing the SMOTE-Tomek Links balancing technique was validated and achieved an accuracy, sensitivity, precision, and F1 score of 0.85.
Downloads
References
“Clasificación Internacional de Enfermedades, undécima revisión (CIE-11), Organización Mundial de la Salud (OMS)”. enero de 2024. [En línea].
Disponible en: https://icd.who.int/browse/2024-01/mms/es#1712535455.
P. Gaitán-Rossi, V. Pérez-Hernández, M. Vilar-Compte, y G. Teruel-Belismelis, “Prevalencia mensual de trastorno de ansiedad generalizada durante la pandemia por Covid-19 en México”, Salud Publica Mex, vol. 63, núm. 4, pp. 478–485, jun. 2021, doi: https://doi.org/10.21149/12257.
S. Graham et al., “Artificial Intelligence for Mental Health and Mental Illnesses: an Overview”, Curr Psychiatry Rep, vol. 21, núm. 11, p. 116, nov. 2019, doi: https://doi.org/10.1007/s11920-019-1094-0.
M. Del Giudice y B. J. Ellis, Evolutionary foundations of developmental psychopathology., 3a ed. John Wiley & Sons, 2016.
P. S. Kavanagh y B. L. Kahl, “Life History Theory”, en Encyclopedia of Evolutionary Psychological Science, V. Weekes-Shackelford, T. K. Shackelford, y V. A. Weekes-Shackelford, Eds., Cham: Springer International Publishing, 2016, pp. 1–12. doi: https://doi.org/10.1007/978-3-319-16999-6_1914-1.
B. L. Kahl, P. S. Kavanagh, y D. H. Gleaves, “Testing a life history model of psychopathology: A replication and extension”, Curr Psychol, vol. 41, núm. 9, pp. 6233–6246, sep. 2022, doi: https://doi.org/10.1007/s12144-020-01062-y.
K. J. Chua, A. W. Lukaszewski, D. M. Grant, y O. Sng, “Human Life History Strategies: Calibrated to External or Internal Cues?”, Evol Psychol, vol. 15, núm. 1, p. 1474704916677342, ene. 2017, doi: https://doi.org/10.1177/1474704916677342.
H. J. Lu, A. T. Yang, Y. Y. Liu, N. Zhu, y L. Chang, “Being Cared for and Growing Up Slowly: Parenting Slows Human Life History”, Parenting, vol. 23, núm. 2, pp. 140–158, abr. 2023, doi: https://doi.org/10.1080/15295192.2023.2243500.
A. Burkov, The Hundred-Page Machine Learning Book, 1a ed. 2019.
G. Cho, J. Yim, Y. Choi, J. Ko, y S.-H. Lee, “Review of Machine Learning Algorithms for Diagnosing Mental Illness”, Psychiatry Investig, vol. 16, núm. 4, pp. 262–269, abr. 2019, doi: https://doi.org/10.30773/pi.2018.12.21.2.
J. Chung y J. Teo, “Single classifier vs. ensemble machine learning approaches for mental health prediction”, Brain Inform, vol. 10, núm. 1, p. 1, ene. 2023, doi: https://doi.org/10.1186/s40708-022-00180-6.
S. Shalev-Shwartz y S. Ben-David, Understanding machine learning: from theory to algorithms. New York: Cambridge university press, 2014.
C. Ordonez, “Comparing association rules and decision trees for disease prediction”, en Proceedings of the international workshop on Healthcare information and knowledge management, Arlington Virginia USA: ACM, nov. 2006, pp. 17–24. doi: https://doi.org/10.1145/1183568.1183573.
T. Chen y C. Guestrin, “XGBoost: A Scalable Tree Boosting System”, en Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco California USA: ACM, ago. 2016, pp. 785–794. doi: https://doi.org/10.1145/2939672.2939785.
T. Hastie, R. Tibshirani, y J. Friedman, The Elements of Statistical Learning. en Springer Series in Statistics. New York, NY: Springer New York, 2009. doi: https://doi.org/10.1007/978-0-387-84858-7.
Y. Freund y R. E. Schapire, “A Decision-Theoretic Generalization of On-Line Learning and an Application to Boosting”, Journal of Computer and System Sciences, vol. 55, núm. 1, pp. 119–139, ago. 1997, doi: https://doi.org/10.1006/jcss.1997.1504.
I. Goodfellow, Y. Bengio, y A. Courville, Deep Learning. MIT Press, 2016.
D. E. Rumelhart, G. E. Hinton, y R. J. Williams, “Learning representations by back-propagating errors”, Nature, vol. 323, núm. 6088, pp. 533–536, oct. 1986, doi: https://doi.org/10.1038/323533a0.
R. A. Fisher, “Statistical Methods for Research Workers”, en Breakthroughs in Statistics, S. Kotz y N. L. Johnson, Eds., en Springer Series in Statistics. , New York, NY: Springer New York, 1992, pp. 66–70. doi: https://doi.org/10.1007/978-1-4612-4380-9_6.
W. H. Kruskal y W. A. Wallis, “Use of Ranks in One-Criterion Variance Analysis”, Journal of the American Statistical Association, vol. 47, núm. 260, pp. 583–621, dic. 1952, doi: https://doi.org/10.1080/01621459.1952.10483441.
M. Friedman, “The Use of Ranks to Avoid the Assumption of Normality Implicit in the Analysis of Variance”, Journal of the American Statistical Association, vol. 32, núm. 200, pp. 675–701, dic. 1937, doi: https://doi.org/10.1080/01621459.1937.10503522.
Nemenyi, P, “Distribution-free Multiple Comparisons”, Ph.D. dissertation, Princeton University, 1963.
H. Alharthi, “Predicting the level of generalized anxiety disorder of the coronavirus pandemic among college age students using artificial intelligence technology”, en 2020 19th International Symposium on Distributed Computing and Applications for Business Engineering and Science (DCABES), Xuzhou, China: IEEE, oct. 2020, pp. 218–221. doi: https://doi.org/10.1109/DCABES50732.2020.00064.
M. Wang, L. L. Richmond, J. L. Schleider, B. D. Nelson, y C. C. Luhmann, “Predicting internalizing symptoms with machine learning: identifying individuals that need care”, Journal of American College Health, pp. 1–10, nov. 2023, doi: https://doi.org/10.1080/07448481.2023.2277185.
Md. I. H. Nayan et al., “Comparison of the Performance of Machine Learning-based Algorithms for Predicting Depression and Anxiety among
University Students in Bangladesh: A Result of the First Wave of the COVID-19 Pandemic”, Asian Journal of Social Health and Behavior, vol. 5, núm. 2, pp. 75–84, abr. 2022, doi: https://doi.org/10.4103/shb.shb_38_22.
J. Maitre, C. Bergeron-Leclerc, D. Maltais, y S. Gaboury, “Investigating anxiety levels in the Quebec university community during the COVID-19 pandemic using machine learning and data exploration techniques”, Multimed Tools Appl, vol. 82, núm. 29, pp. 46109–46127, dic. 2023, doi: https://doi.org/10.1007/s11042-023-16096-0.
M. Mahalingam et al., “A Machine Learning Study to Predict Anxiety on Campuses in Lebanon”, en Studies in Health Technology and Informatics, J. Mantas, P. Gallos, E. Zoulias, A. Hasman, M. S. Househ, M. Charalampidou, y A. Magdalinou, Eds., IOS Press, 2023. doi: https://doi.org/10.3233/SHTI230430.
A. Daza, Arroyo-Paz, J. Bobadilla, O. Apaza, y J. Pinto, “Stacking ensemble learning model for predict anxiety level in university students using balancing methods”, Informatics in Medicine Unlocked, vol. 42, p. 101340, 2023, doi: https://doi.org/10.1016/j.imu.2023.101340.
A. V. Chavanne et al., “Anxiety onset in adolescents: a machine-learning prediction”, Mol Psychiatry, vol. 28, núm. 2, pp. 639–646, feb. 2023, doi: https://doi.org/10.1038/s41380-022-01840-z.
M. D. Nemesure, M. V. Heinz, R. Huang, y N. C. Jacobson, “Predictive modeling of depression and anxiety using electronic health records and a novel machine learning approach with artificial intelligence”, Sci Rep, vol. 11, núm. 1, p. 1980, ene. 2021, doi: https://doi.org/10.1038/s41598-021-81368-4.
R. Pal et al., “A Novel Smart Belt for Anxiety Detection, Classification, and Reduction Using IIoMT on Students’ Cardiac Signal and MSY”,
Bioengineering, vol. 9, núm. 12, p. 793, dic. 2022, doi: https://doi.org/10.3390/bioengineering9120793.
J. Wang et al., “Analysis of Risk Factors and Diagnosis for Anxiety Disorder in Older People with the Aid of Artificial Intelligence: Observational Study”, en 2023 31st Irish Conference on Artificial Intelligence and Cognitive Science (AICS), Letterkenny, Ireland: IEEE, dic. 2023, pp. 1–8. doi: https://doi.org/10.1109/AICS60730.2023.10470782.
É. D. M. Silveira et al., “Decoding rumination: A machine learning approach to a transdiagnostic sample of outpatients with anxiety, mood and psychotic disorders”, Journal of Psychiatric Research, vol. 121, pp. 207–213, feb. 2020, doi: https://doi.org/10.1016/j.jpsychires.2019.12.005.
T. Richter, B. Fishbain, E. Fruchter, G. Richter-Levin, y H. Okon-Singer, “Machine learning-based diagnosis support system for differentiating
between clinical anxiety and depression disorders”, Journal of Psychiatric Research, vol. 141, pp. 199–205, sep. 2021, doi: https://doi.org/10.1016/j.jpsychires.2021.06.044.
A. J. Figueredo et al., “The K-SF-42: A New Short Form of the Arizona Life History Battery”, Evol Psychol, vol. 15, núm. 1, p. 147470491667627, ene. 2017, doi: https://doi.org/10.1177/1474704916676276.
M. Del Giudice, “The Life History Framework and the FSD Model”, en Evolutionary Psychopathology, M. Del Giudice, Ed., Oxford University Press, 2018, pp. 153–192. doi: https://doi.org/10.1093/med-psych/9780190246846.003.0006.
T. J. Meyer, M. L. Miller, R. L. Metzger, y T. D. Borkovec, “Development and validation of the penn state worry questionnaire”, Behaviour Research and Therapy, vol. 28, núm. 6, pp. 487–495, 1990, doi: https://doi.org/10.1016/0005-7967(90)90135-6.
M. Grebovic, L. Filipovic, I. Katnic, M. Vukotic, y T. Popovic, “Machine Learning Models for Statistical Analysis”, IAJIT, vol. 20, núm. 3A, 2023, doi:
https://doi.org/10.34028/iajit/20/3A/8.
X. Cheng, “A Comprehensive Study of Feature Selection Techniques in Machine Learning Models”, Ins. Comput. Signal Syst., vol. 1, núm. 1, pp. 65–78, nov. 2024, doi: 10.70088/xpf2b276.
P. Rawat, “Importance of Feature Selection in Model Accuracy”, 2021. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:236907306.
C. D. Stapleton, “Basic Concepts and Procedures of Confirmatory Factor Analysis.”, 1997. [En línea]. Disponible en: https://api.semanticscholar.org/CorpusID:58944126.
P. Misra y A. S. Yadav, “Improving the Classification Accuracy using Recursive Feature Elimination with Cross-Validation”, vol. 11, núm. 3, pp. 659–665, may 2020.
L. A. Yates, Z. Aandahl, S. A. Richards, y B. W. Brook, “Cross validation for model selection: A review with examples from ecology”, Ecological
Monographs, vol. 93, núm. 1, p. e1557, feb. 2023, doi: https://doi.org/10.1002/ecm.1557.
N. V. Chawla, K. W. Bowyer, L. O. Hall, y W. P. Kegelmeyer, “SMOTE: Synthetic Minority Over-sampling Technique”, jair, vol. 16, pp. 321–357, jun. 2002, doi: https://doi.org/10.1613/jair.953.
M. Zeng, B. Zou, F. Wei, X. Liu, y L. Wang, “Effective prediction of three common diseases by combining SMOTE with Tomek links technique for imbalanced medical data”, en 2016 IEEE International Conference of Online Analysis and Computing Science (ICOACS), Chongqing, China: IEEE, may 2016, pp. 225–228. doi: https://doi.org/10.1109/ICOACS.2016.7563084.
O. Rainio, J. Teuho, y R. Klén, “Evaluation metrics and statistical tests for machine learning”, Sci Rep, vol. 14, núm. 1, p. 6086, mar. 2024, doi: https://doi.org/10.1038/s41598-024-56706-x.
X. Zeng y T. R. Martinez, “Distribution-balanced stratified cross-validation for accuracy estimation”, Journal of Experimental & Theoretical Artificial Intelligence, vol. 12, núm. 1, pp. 1–12, ene. 2000, doi: https://doi.org/10.1080/095281300146272.
H. H. Rashidi, S. Albahra, S. Robertson, N. K. Tran, y B. Hu, “Common statistical concepts in the supervised Machine Learning arena”, Front. Oncol., vol. 13, p. 1130229, feb. 2023, doi: https://doi.org/10.3389/fonc.2023.1130229
C. Gale y O. Davidson, “Generalised anxiety disorder”, BMJ, vol. 334, núm. 7593, pp. 579–581, mar. 2007, doi: https://doi.org/10.1136/bmj.39133.559282.be.
Z. Dodd, S. Driver, A. Warren, S. Riggs, y M. Clark, “Effects of Adult Romantic Attachment and Social Support on Resilience and Depression in
Individuals with Spinal Cord Injuries”, Topics in Spinal Cord Injury Rehabilitation, vol. 21, núm. 2, pp. 156–165, mar. 2015, doi: https://doi.org/10.1310/sci2102-156.
A. Del Carlo et al., “Different measures of impulsivity in patients with anxiety disorders: A case control study”, Psychiatry Research, vol. 197, núm. 3, pp. 231–236, may 2012, doi: https://doi.org/10.1016/j.psychres.2011.09.020.
R. Ferreira-Garcia, C. Gitahy Falcão Faria, A. E. Nardi, y R. C. da Rocha Freire, “Negative Affect Mediates Impulsivity in Generalized Anxiety
Disorder”, Psychopathology, vol. 52, núm. 6, pp. 327–333, 2019, doi: https://doi.org/10.1159/000503395.
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Mexicana de Ingenieria Biomedica

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.

