Viabilidad en el uso de la región UV-Visible para la caracterización de glucosa en agua desionizada mediante Arduino 1

Autores/as

DOI:

https://doi.org/10.17488/RMIB.44.2.3

Palabras clave:

Agua desionizada, concentraciones de glucosa, UV-visible, Arduino, K-Nearest Neighbor

Resumen

Con un estimado de aproximadamente 2 millones de muertes por año, la diabetes es una de las 5 enfermedades no transmisibles más mortales a nivel mundial. Aunque esta enfermedad no es mortal, el deterioro de la salud del paciente por un mal plan para controlar sus niveles de glucosa puede tener un desenlace fatal. Con el fin de sentar las bases para el desarrollo de un dispositivo que permita estimar los niveles de glucosa en algún fluido corporal, presentamos los resultados obtenidos no solo para la estimación de glucosa en agua desionizada, sino que también describimos el desarrollo y configuración del dispositivo creado. Luego de analizar 50 señales obtenidos a partir de 5 concentraciones de glucosa diferentes, se evidencia la factibilidad de utilizar el dispositivo desarrollado para el análisis, ya que, considerando el algoritmo K-Nearest Neighbors (KNN), todas las señales se asociaron correctamente al grupo de glucosa al que pertenecen.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

World Health Organization (WHO), Non communicable diseases (2022). Available: https://www.who.int/news-room/fact-sheets/detail/noncommunicable-diseases (accessed Oct. 03, 2022).

World Health Organization (WHO), Diabetes (2022). Available: https://www.who.int/es/news-room/fact-sheets/detail/diabetes (accessed Oct. 03, 2022).

American Diabetes Association (ADA), Diabetes Symptoms, Causes, & Treatment (2023). Available: https://diabetes.org/diabetes (accessed Oct. 03, 2022).

M. Erbach, G. Freckmann, R. Hinzmann, B. Kulzer, R. Ziegler, L. Heinemann and O. Schnell, “Interferences and Limitations in Blood Glucose Self-Testing: An Overview of the Current Knowledge,” J. Diabetes Sci. Technol., vol. 10, no. 5, pp. 1161–1168, Sep. 2016, doi: https://doi.org/10.1177/1932296816641433

M. Franciosi, G. Lucisano, F. Pellegrini, A. Cantarello, A. Consoli, L. Cucco, R. Ghidelli, G. Sartore, L. Sciangula and A. Nicolucci, “ROSES: role of self-monitoring of blood glucose and intensive education in patients with Type 2 diabetes not receiving insulin. A pilot randomized clinical trial,” Diabet. Med., vol. 28, no. 7, pp. 789–796, 2011, doi: https://doi.org/10.1111/j.1464-5491.2011.03268.x

O. Schnell, H. Alawi, T. Battelino, A. Ceriello, P. Diem, A.-M. Felton, W. Grzeszczak, K. Harno, P. Kempler, I. Satman, B. Vergès, “Self-Monitoring of Blood Glucose in Type 2 Diabetes: Recent Studies,” J. Diabetes Sci. Technol., vol. 7, no. 2, pp. 478–488, Mar. 2013, doi: https://doi.org/10.1177/193229681300700225

A. S. Bolla and R. Priefer, “Blood glucose monitoring- an overview of current and future non-invasive devices,” Diabetes Metab. Syndr. Clin. Res. Rev., vol. 14, no. 5, pp. 739–751, Sep. 2020, doi: https://doi.org/10.1016/j.dsx.2020.05.016

C. Srichan, W. Srichan, P. Danvirutai, C. Ritsongmuang, A. Sharma, and S. Anutrakulchai, “Non-invasively accuracy enhanced blood glucose sensor using shallow dense neural networks with NIR monitoring and medical features,” Sci. Rep., vol. 12, no. 1, art. 1769, Feb. 2022, doi: https://doi.org/10.1038/s41598-022-05570-8

X. Yang, T. Fang, Y Li, L. Guo, F. Li, F. Huang, and L. Li, “Pre-diabetes diagnosis based on ATR-FTIR spectroscopy combined with CART and XGBoots,” Optik, vol. 180, pp. 189–198, Feb. 2019, doi: https://doi.org/10.1016/j.ijleo.2018.11.059

E. Guevara, J. C. Torres-Galván, M. G. Ramírez-Elías, C. Luevano-Contreras, and F. J. González, “Use of Raman spectroscopy to screen diabetes mellitus with machine learning tools,” Biomed. Opt. Express, vol. 9, no. 10, pp. 4998–5010, Oct. 2018, doi: https://doi.org/10.1364/BOE.9.004998

B. M. Chege, Z. Birech, P. W. Mwangi, and F. O. Bukachi, “Utility of Raman spectroscopy in diabetes detection based on biomarker Raman bands and in antidiabetic efficacy studies of herbal extract Rotheca myricoides Hochst,” J. Raman Spectrosc., vol. 50, no. 10, pp. 1358–1366, 2019, doi: https://doi.org/10.1002/jrs.5619

S. K. Benson, K. M. Boyce, R. M. Bunker, N. B. Collins, K. J. Daily, A. S. Esway, G. T. Gilmore, C. W. Hartzler, G. P. Howard, N. A. Kasmar, K. J. Kennedy, B. L. King, T. N. Kordahi, T. A. Mattioli, D. M. Pugh, L. A. Ray, S. L. Ross, M. H. Torcasio, D. P. Webber, D. L. Morris, and T. C. Leeper, “Multinuclear NMR and UV–Vis spectroscopy of site directed mutants of the diabetes drug target protein mitoNEET suggest that folding is intimately coupled to iron–sulfur cluster formation,” Inorg. Chem. Commun., vol. 63, pp. 86–92, Jan. 2016, doi: https://doi.org/10.1016/j.inoche.2015.11.022

J. Torres-Gamez, J. A. Rodriguez, M. E. Paez-Hernandez, and C. A. Galan-Vidal, “Application of Multivariate Statistical Analysis to Simultaneous Spectrophotometric Enzymatic Determination of Glucose and Cholesterol in Serum Samples,” Int. J. Anal. Chem., vol. 2019, art. 7532687, Jan. 2019, doi: https://doi.org/10.1155/2019/7532687

S. Shokouhi, M. R. Sohrabi, and S. Mofavvaz, “Comparison between UV/Vis spectrophotometry based on intelligent systems and HPLC methods for simultaneous determination of anti-diabetic drugs in binary mixture,” Optik, vol. 206, art. 164304, Mar. 2020, doi: https://doi.org/10.1016/j.ijleo.2020.164304

N. D. Nguyen, T. V. Nguyen, A. D. Chu, H. V. Tran, L. T. Tran, and C. D. Huynh, “A label-free colorimetric sensor based on silver nanoparticles directed to hydrogen peroxide and glucose,” Arab. J. Chem., vol. 11, no. 7, pp. 1134–1143, Nov. 2018, doi: https://doi.org/10.1016/j.arabjc.2017.12.035

X. Luo, J. Xia, X. Jiang, M. Yang, and S. Liu, “Cellulose-Based Strips Designed Based on a Sensitive Enzyme Colorimetric Assay for the Low Concentration of Glucose Detection,” Anal. Chem., vol. 91, no. 24, pp. 15461–15468, Dec. 2019, doi: https://doi.org/10.1021/acs.analchem.9b03180

S. Jiang, Y. Zhang, Y. Yang, Y. Huang, G. Ma, Y. Luo, P. Huang, and J. Lin, “Glucose Oxidase-Instructed Fluorescence Amplification Strategy for Intracellular Glucose Detection,” ACS Appl. Mater. Interfaces, vol. 11, no. 11, pp. 10554–10558, Mar. 2019, doi: https://doi.org/10.1021/acsami.9b00010

M. Bartosiak, J. Giersz, and K. Jankowski, “Analytical monitoring of selenium nanoparticles green synthesis using photochemical vapor generation coupled with MIP-OES and UV–Vis spectrophotometry,” Microchem. J., vol. 145, pp. 1169–1175, Mar. 2019, doi: https://doi.org/10.1016/j.microc.2018.12.024

Digi-Key Electronics. “UV5TZ-400-15”. Digi-Key Electronics. Available: https://www.digikey.com/es/products/detail/bivar-inc/UV5TZ-400-15/3095679 (accessed Oct. 15, 2022).

Everlight. “PT1302B-C2 Datasheet - 5mm Phototransistor”. Everlight. Available: http://www.datasheet.es/PDF/796537/PT1302B-C2-pdf.html (accessed Dec. 18, 2022).

L. Liberti, and C. Cavor, Euclidean Distance Geometry: An Introduction, Durham, USA: Springer, 2010, pp. 133. [Online]. Available: https://doi.org/10.1007/978-3-319-60792-4 (accessed Nov. 21, 2022).

A. Géron, Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems. Canada: O’Reilly Media, Inc., 2019, pp. 856.

Q. Chen, H. Lin, and J. Zhao, Advanced Nondestructive Detection Technologies in Food, Singapure: Springer, 2021, pp. 333. [Online]. Available: https://doi.org/10.1007/978-981-16-3360-7 (accessed Nov. 21, 2022).

J. Workman, The Concise Handbook of Analytical Spectroscopy, USA: World Scientific, 2016, pp. 1828. [Online]. Available: https://doi.org/10.1142/8800 (accessed Nov. 21, 2022).

R. White, Chromatography/Fourier Transform Infrared Spectroscopy and Its Applications, Boca Raton, USA: CRP Press, 1989, pp. 344. [Online]. Available: https://doi.org/10.1201/9781003066323 (accessed Nov. 21, 2022).

E. B. Mode, Elementos de probabilidad y estadística, Barcelona, Spain: Editorial Reverté, 2021, pp. 380.

dispositivo

Publicado

2023-06-28

Cómo citar

Sanchez-Monroy, V., Barros-Martinez, L. E., Hidalgo-Pedraza, A., Mendoza-Munguia, B. A., & Sanchez-Brito, M. (2023). Viabilidad en el uso de la región UV-Visible para la caracterización de glucosa en agua desionizada mediante Arduino 1 . Revista Mexicana De Ingenieria Biomedica, 44(2), 27–37. https://doi.org/10.17488/RMIB.44.2.3

Número

Sección

Artículos de Investigación

Citas Dimensions

Artículos más leídos del mismo autor/a