A Chitosan-based Hydrogel with PLCL, ZnO NPs, and Oligoelements: A Promising Antibiotic Scaffold for Tissue Engineering
DOI:
https://doi.org/10.17488/RMIB.43.1.3Keywords:
Chitosan, PLCL, ZnO nanoparticles, Antibacterial, Tissue engineeringAbstract
Tissue engineering involves anchorage-dependent cells cultured on scaffolds, with growth factors added to facilitate cell proliferation. Its use in transplants implies the risk of bacterial infection. The current contribution describes the preparation and antibacterial evaluation of a chitosan-based hydrogel physically cross-linked with poly(l-lactic-co-ɛ-caprolactone) (PLCL) and enriched with zinc oxide nanoparticles (ZnO NPs) and trace elements (potassium and magnesium). The material was developed as a scaffold with built-in antibacterial properties. Chitosan and PLCL are biocompatible support materials applied in medicine for the repair and regeneration of damaged tissues, objectives promoted by ZnO NPs and the aforementioned trace elements. The ZnO NPs were elaborated by chemical coprecipitation. The materials were characterized by XRD, FT-IR, and SEM. Antibacterial testing was performed with strains of Escherichia coli and Staphylococcus aureus by the Kirby-Bauer method, in accordance with the NCCLS and CLSI guidelines. It was possible to obtain a homogeneous hydrogel with adequate morphology and distribution of elements. The hydrogel with 300 mM of Mg, K, and ZnO NP’s showed antibacterial inhibition halos of 13 mm for S. aureus and 19 mm for E. coli. This innovative biomaterial with trace elements holds promise for tissue engineering by considering the challenge of bacterial infection.
Downloads
References
Serrato Ochoa D, Nieto Aguilar R, Aguilera Méndez A. Ingeniería de tejidos. Una nueva disciplina en medicina regenerativa. Investig Cienc [Internet]. 2015;23(64):61-69. Available from: https://www.redalyc.org/ar|ticulo.oa?id=67441039009
Abdulghani S, Mitchell GR. Biomaterials for In Situ Tissue Regeneration: A Review. Biomolecules [Internet]. 2019;9(11):750. Available from: https://doi.org/10.3390/biom9110750
Gough JE, Scotchford CA, Downes S. Cytotoxicity of glutaraldehyde crosslinked collagen/poly(vinyl alcohol) films is by the mechanism of apoptosis. J Biomed Mater Res [Internet]. 2002;61(1):121-130. Available from: https://doi.org/10.1002/jbm.10145
Patrulea V, Ostafe V, Borchard G, Jordan O. Chitosan as a starting material for wound healing applications. Eur J Pharm Biopharm [Internet]. 2015;97(Part B):417-26. Available from: https://doi.org/10.1016/j.ejpb.2015.08.004
Ortega Cardona CE, Aparicio Fernández X. Quitosano: una alternativa sustentable para el empaque de alimentos. RDU [Internet]. 2020; 21(5):1-9. Available from: https://doi.org/10.22201/cuaieed.16076079e.2020.21.5.4
He Y, Liu W, Guan L, Chen J, et al. A 3D-Printed PLCL Scaffold Coated with Collagen Type I and Its Biocompatibility. BioMed Res Int [Internet]. 2018;2018:5147156. Available from: https://doi.org/10.1155/2018/5147156
Spears JW, Engle TE. Feed Ingredients: Feed Supplements: Microminerals. Encyclopedia of Dairy Sciences [Internet]. 2011. 378-383. Available from: https://doi.org/10.1016/B978-0-08-100596-5.00760-5
Bhattacharya PT, Misra SR, Hussain M. Nutritional Aspects of Essential Trace Elements in Oral Health and Disease: An Extensive Review. Scientifica [Internet]. 2016;2016:5464373. Available from: https://doi.org/10.1155/2016/5464373
Silva CS, Moutinho CG, Vinha AF, Matos CM. Trace Minerals in Human Health: Iron, Zinc, Copper, Manganese and Fluorine. Int J Sci Res Methodol [Internet]. 2019;13(3):57-80. Available from: https://bdigital.ufp.pt/bitstream/10284/8105/1/5.Customer-IJSRM_HUMAN-13_8-19-27-08-2019%20%282%29.pdf
Gao C, Peng S, Feng P, Shuai C. Bone biomaterials and interactions with stem cells. Bone Res [Internet]. 2017;5:17059. Available from: https://doi.org/10.1038/boneres.2017.59
Laurenti M, Cauda V. ZnO Nanostructures for Tissue Engineering Applications. Nanomaterials [Internet]. 2017;7(11):374. Available from: https://doi.org/10.3390/nano7110374
Ribeiro M, Monteiro FJ, Ferraz MP. Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter [Internet]. 2012;2(4):176-194. Available from: https://dx.doi.org/10.4161%2Fbiom.22905
Blanes JI, Clará A, Lozano F, Alcalá D, et al. Consensus document on the treatment of diabetic foot infections. Angiología [Internet]. 2012;64(1):31-59. Available from: https://doi.org/10.1016/j.angio.2011.11.001
National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents: approved guideline [Internet]. Wayne, PA: National Committee for Clinical Laboratory Standards; 1999. Available from: https://webstore.ansi.org/preview-pages/CLSI/preview_M26-A.pdf
Clinical and Laboratory Standards Institute. Performance Standards for Antimicrobial Susceptibility Testing. CLSI supplement M100 [Internet]. Wayne, PA: Clinical and Laboratory Standards Institute; 2017. Available from: https://file.qums.ac.ir/repository/mmrc/clsi%202017.pdf
Purwaningsih SY, Pratapa S, Triwikantoro, and Darminto. Nano-sized ZnO powders prepared by co-precipitation method with various pH. AIP Conf Proc [Internet]. 2016;1725:020063.1-020063.6. Available from: https://doi.org/10.1063/1.4945517
Colomer MT. Straightforward synthesis of Ti-doped YSZ gels by chemical modification of the precursors alkoxides. J Sol-Gel Sci Technol [Internet]. 2013;67:135-144. Available from: https://doi.org/10.1007/s10971-013-3059-9
Maldonado Lara K, Luna Bárcenas G, Luna Hernández E, Padilla Vaca, et al. Preparation and characterization of Copper Chitosan Nanocomposites with Antibacterial Activity for Applications in Tissue Engineering. Rev Mex Ing Biomed [Internet]. 2017;38(1):306-313. Available from: https://dx.doi.org/10.17488/RMIB.38.1.26
Varma R, Vasudevan S. Extraction, Characterization, and Antimicrobial Activity of Chitosan from Horse Mussel Modiolus modiolus. ACS Omega [Internet]. 2020;5(32):20224−20230. Available from: https://doi.org/10.1021/acsomega.0c01903
Garkhal K, Verma S, Jonnalagadda S, Kumar N. Fast degradable poly(L-lactide-co-e-caprolactone) microspheres for tissue engineering: Synthesis, characterization, and degradation behavior. J Polym Sci A: Polym Chem [Internet]. 2007;45(13):2755–2764. Available from: https://doi.org/10.1002/pola.22031
Zavaleta EG, Saldaña JJ, Jáuregui RSR, Pacherrez GMD, et al. Antibacterial effect of ZnO nanoparticles on Staphylococcus aureus and Salmonella typhi. Arnaldoa [Internet]. 2019;26(1):421-432. Available from: http://www.scielo.org.pe/pdf/arnal/v26n1/a22v26n1.pdf
Yamamoto O. Influence of particle size on the antibacterial activity of zinc oxide. Int J Inorg Mater [Internet]. 2001;3(7):643–646. Available from: https://doi.org/10.1016/S1466-6049(01)00197-0
Stautz J, Hellmich Y, Fuss MF, Silberberg JM, et al. Molecular Mechanisms for Bacterial Potassium Homeostasis. J Mol Biol [Internet]. 2021;433(16):166968. Available from: https://doi.org/10.1016/j.jmb.2021.166968
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.