Comparison of Accuracy of Color Spaces in Cell Features Classification in Images of Leukemia types ALL and MM
DOI:
https://doi.org/10.17488/RMIB.43.2.3Keywords:
PCA, Statistical moments, Color spaces, Leukemia imagesAbstract
This study presents a methodology for identifying the color space that provides the best performance in an image processing application. When measurements are performed without selecting the appropriate color model, the accuracy of the results is considerably altered. It is significant in computation, mainly when a diagnostic is based on stained cell microscopy images. This work shows how the proper selection of the color model provides better characterization in two types of cancer, acute lymphoid leukemia, and multiple myeloma. The methodology uses images from a public database. First, the nuclei are segmented, and then statistical moments are calculated for class identification. After, a principal component analysis is performed to reduce the extracted features and identify the most significant ones. At last, the predictive model is evaluated using the k-nearest neighbor algorithm and a confusion matrix. For the images used, the results showed that the CIE L*a*b color space best characterized the analyzed cancer types with an average accuracy of 95.52%. With an accuracy of 91.81%, RGB and CMY spaces followed. HSI and HSV spaces had an accuracy of 87.86% and 89.39%, respectively, and the worst performer was grayscale with an accuracy of 55.56%.
Downloads
References
McKenzie SB, Williams JL. Clinical Laboratory Hematology. 3rd ed. Boston: Pearson; 2014. 1037p.
Bozzone DM. The Biology of Cancer: Leukemia. New York, N.Y.: Chelsea House Pub; 2009. 168p.
Sabath DE. Leukemia. In: Maloy S, Hughes K (eds). Brenner’s Encyclopedia of Genetics [Internet]. Academic Press;2013. 226–227p. Available from: https://doi.org/10.1016/B978-0-12-374984-0.00862-7
Halim NHA, Mashor MY, Hassan R. Automatic Blasts Counting for Acute Leukemia Based on Blood Samples. Int J Res Rev Comput Sci [Internet]. 2011;2(4):971–976. Available from: https://www.lumenera.com/media/wysiwyg/documents/whitepapers/IJRRCS-Research-Article.pdf
Hazra T, Kumar M, Tripathy SS. Automatic Leukemia Detection Using Image Processing Technique. Int J Latest Technol Eng Manag Appl Sci [Internet]. 2017;6(4):42–45. Available from: https://www.ijltemas.in/DigitalLibrary/Vol.6Issue4/42-45.pdf
Putzu L, Caocci G, Di Ruberto C. Leucocyte classification for leukaemia detection using image processing techniques. Artif Intell Med [Internet]. 2014;62(3):179–191. Available from: https://doi.org/10.1016/j.artmed.2014.09.002
Mittal A, Dhalla S, Gupta S, Gupta A. Automated analysis of blood smear images for leukemia detection: a comprehensive review. ACM Comput Surv [Internet]. 2022;1–36. Available from: https://doi.org/10.1145/3514495
Shah A, Naqvi SS, Naveed K, Salem N, et al. Automated Diagnosis of Leukemia: A Comprehensive Review. IEEE Access [Internet]. 2021;9:132097–132124. Available from: https://doi.org/10.1109/ACCESS.2021.3114059
Mohammed ZF, Abdulla AA. Thresholding-based White Blood Cells Segmentation from Microscopic Blood Images. UHD J Sci Technol [Internet]. 2020;4(1):9–17. Available from: https://doi.org/10.21928/uhdjst.v4n1y2020.pp9-17
Alsalem MA, Zaidan AA, Zaidan BB, Hashim M, et al. A review of the automated detection and classification of acute leukaemia: Coherent taxonomy, datasets, validation and performance measurements, motivation, open challenges and recommendations. Comput Methods Programs Biomed [Internet]. 2018;158:93–112. Available from: https://doi.org/10.1016/j.cmpb.2018.02.005
Anilkumar KK, Manoj VJ, Sagi TM. A survey on image segmentation of blood and bone marrow smear images with emphasis to automated detection of Leukemia. Biocybern Biomed Eng [Internet]. 2020;40(4):1406-1420. Available from: https://doi.org/10.1016/j.bbe.2020.08.010
Mughal TI, Goldman JM, Mughal ST. Understanding Leukemias, Lymphomas and Myelomas. 2nd ed. London: CRC Press; 2013. 200p.
Dese K, Raj H, Ayana G, Yemane T, et al. Accurate Machine-Learning-Based classification of Leukemia from Blood Smear Images. Clin Lymphoma Myeloma Leuk [Internet]. 2021;21(11):903–914. Available from: https://doi.org/10.1016/j.clml.2021.06.025
Saeedizadeh Z, Mehri Dehnavi A, Talebi A, Rabbani H, et al. Automatic recognition of myeloma cells in microscopic images using bottleneck algorithm, modified watershed and SVM classifier. J Microsc [Internet]. 2016;261(1):46–56. Available from: https://doi.org/10.1111/jmi.12314
P R, P SD. Detection of Blood Cancer-Leukemia using K-means Algorithm. In: 2021 5th International Conference on Intelligent Computing and Control Systems (ICICCS) [Internet]. Madurai: IEEE; 2021:838–842. Available from: https://doi.org/10.1109/ICICCS51141.2021.9432244
Soni F, Sahu L, Getnet ME, Reta BY. Supervised Method for Acute Lymphoblastic Leukemia Segmentation and Classification Using Image Processing. In: 2018 2nd International Conference on Trends in Electronics and Informatics (ICOEI) [Internet]. Tirunelveli: IEEE; 2018:1075–1079. Available from: https://doi.org/10.1109/ICOEI.2018.8553937
Jagadev P, Virani HG. Detection of leukemia and its types using image processing and machine learning. In: 2017 International Conference on Trends in Electronics and Informatics (ICEI) [Internet]. Tirunelveli: IEEE; 2017:522–526. Available from: https://doi.org/10.1109/ICOEI.2017.8300983
Kumar P, Udwadia SM. Automatic detection of acute myeloid leukemia from microscopic blood smear image. In: 2017 International Conference on Advances in Computing, Communications and Informatics (ICACCI) [Internet]. Udupi: IEEE; 2017:1803–1807. Available from: https://doi.org/10.1109/ICACCI.2017.8126106
Mirmohammadi P, Ameri M, Shalbaf A. Recognition of acute lymphoblastic leukemia and lymphocytes cell subtypes in microscopic images using random forest classifier. Phys Eng Sci Med [Internet]. 2021;44(2):433–441. Available from: https://doi.org/10.1007/s13246-021-00993-5
Abdeldaim AM, Sahlol AT, Elhoseny M, Hassanien AE. Computer-Aided Acute Lymphoblastic Leukemia Diagnosis System Based on Image Analysis. In: Hassanien A, Oliva D (eds). Studies in Computational Intelligence [Internet]. Cham: Springer; 2018:730.131–147p. Available from: https://doi.org/10.1007/978-3-319-63754-9_7
Rahman A, Hasan MM. Automatic Detection of White Blood Cells from Microscopic Images for Malignancy Classification of Acute Lymphoblastic Leukemia. In: 2018 International Conference on Innovation in Engineering and Technology (ICIET) [Internet]. Dhaka: IEEE; 2018:1–6. Available from: https://doi.org/10.1109/CIET.2018.8660914
Shafique S, Tehsin S, Anas S, Masud F. Computer-assisted Acute Lymphoblastic Leukemia detection and diagnosis. In: 2019 2nd International Conference on Communication, Computing and Digital systems (C-CODE) [Internet]. Islamabad: IEEE; 2019:184–189. Available from: https://doi.org/10.1109/C-CODE.2019.8680972
Singhal V, Singh P. Texture Features for the Detection of Acute Lymphoblastic Leukemia. In: Satapathy S, Joshi A, Modi N, Pathak N (eds). Advances in Intelligent Systems and Computing [Internet]. Singapore: Springer; 2016:535–43. Available from: https://doi.org/10.1007/978-981-10-0135-2_52
Rehman A, Abbas N, Saba T, Rahman SIU, et al. Classification of acute lymphoblastic leukemia using deep learning. Microsc Res Tech [Internet]. 2018;81(11):1310–1317. Available from: https://doi.org/10.1002/jemt.23139
Rawat J, Singh A, HS B, Virmani J, et al. Computer assisted classification framework for prediction of acute lymphoblastic and acute myeloblastic leukemia. Biocybern Biomed Eng [Internet]. 2017;37(4):637–654. Available from: https://doi.org/10.1016/j.bbe.2017.07.003
Muntasa A, Yusuf M. Color-Based Hybrid Modeling to Classify the Acute Lymphoblastic Leukemia. Int J Intell Eng Syst [Internet]. 2020;13(4):408–422. Available from: https://doi.org/10.22266/ijies2020.0831.36
Mandal S, Daivajna V, V R. Machine Learning based System for Automatic Detection of Leukemia Cancer Cell. In: 2019 IEEE 16th India Council International Conference (INDICON) [Internet]. New Delhi: IEEE; 2019:1–4. Available from: https://doi.org/10.1109/INDICON47234.2019.9029034
Acharya V, Kumar P. Detection of acute lymphoblastic leukemia using image segmentation and data mining algorithms. Med Biol Eng Comput [Internet]. 2019;57(8):1783–1811. Available from: https://doi.org/10.1007/s11517-019-01984-1
Bagasjvara RG, Candradewi I, Hartati S, Harjoko A. Automated detection and classification techniques of Acute leukemia using image processing: A review. In: 2016 2nd International Conference on Science and Technology-Computer (ICST) [Internet]. Yogyakarta: IEEE; 2016:35–43. Available from: https://doi.org/10.1109/ICSTC.2016.7877344
Belhekar A, Gagare K, Bedse R, Bhelkar Y, et al. Leukemia Cancer Detection Using Image Analytics : (Comparative Study). In: 2019 5th International Conference On Computing, Communication, Control And Automation (ICCUBEA) [Internet]. Pune: IEEE; 2019:1–6. Available from: https://doi.org/10.1109/ICCUBEA47591.2019.9128546
Khalid S, Khalil T, Nasreen S. A survey of feature selection and feature extraction techniques in machine learning. In: 2014 Science and Information Conference [Internet]. London: IEEE; 2014:372–378. Available from: https://doi.org/10.1109/SAI.2014.6918213
Kumar D, Jain N, Khurana A, Mittal S, et al. Automatic Detection of White Blood Cancer From Bone Marrow Microscopic Images Using Convolutional Neural Networks. IEEE Access [Internet]. 2020;8:142521–142531. Available from: https://doi.org/10.1109/ACCESS.2020.3012292
Sahlol AT, Abdeldaim AM, Hassanien AE. Automatic acute lymphoblastic leukemia classification model using social spider optimization algorithm. Soft Comput [Internet]. 2019;23(15):6345–6360. Available from: https://doi.org/10.1007/s00500-018-3288-5
Sahlol AT, Kollmannsberger P, Ewees AA. Efficient Classification of White Blood Cell Leukemia with Improved Swarm Optimization of Deep Features. Sci Rep [Internet]. 2020;10(1):2536. Available from: https://doi.org/10.1038/s41598-020-59215-9
Mishra S, Majhi B, Sa PK. Texture feature based classification on microscopic blood smear for acute lymphoblastic leukemia detection. Biomed Signal Process Control [Internet]. 2019;47:303–311. Available from: https://doi.org/10.1016/j.bspc.2018.08.012
Pešić I. Segmentation and Classification of Leucocyte Images for Detection of Acute Lymphoblastic Leukemia. In: 2020 7th ETRAN&IcETRAN international conference [Internet]. Belgrade: IcETRAN; 2020:2–7. Available from: https://www.etran.rs/2020/ZBORNIK_RADOVA/Radovi_prikazani_na_konferenciji/047_BTI1.7.pdf
Mirmohammadi P, Taghavi A, Ameri A. Automatic Recognition of Acute Lymphoblastic Leukemia Cells from Microscopic Images. Int J Innov Res Sci Eng [Internet]. 2017;5(7):8-11. Available from: https://ijirse.in/docs/2017/Sep 17/IJIRSE170902.pdf
Salih Hasan BM, Abdulazeez AM. A Review of Principal Component Analysis Algorithm for Dimensionality Reduction. J Soft Comput Data Min [Internet]. 2021;2(1):20–30. Available from: https://publisher.uthm.edu.my/ojs/index.php/jscdm/article/view/8032
Jolliffe IT. Principal Component Analysis [Internet]. New York: Springer; 2002. 488p. Available from: https://doi.org/10.1007/b98835
Harun NH, Bakar JA, Wahab ZA, Osman MK, et al. Color Image Enhancement of Acute Leukemia Cells in Blood Microscopic Image for Leukemia Detection Sample. In: 2020 IEEE 10th Symposium on Computer Applications & Industrial Electronics (ISCAIE) [Internet]. Malaysia: IEEE; 2020:24–9. Available from: https://doi.org/10.1109/ISCAIE47305.2020.9108810
Sukanya CM, Vince P. AML Detection in Blood Microscopic Images Using DRLBP and DRLTP Feature Extraction. Int J Eng Sci Comput [Internet]. 2016;6(6):6942–6946. Available from: https://ijesc.org/upload/16ed93ec7acaf83596e4dc815fc66cad.AML%20Detection%20in%20Blood%20Microscopic%20Images%20Using%20%20DRLBP%20and%20DRLTP%20Feature%20Extraction.pdf
Rege MV, Abdulkareem MB, Gaikwad S, Gawli BW. Automatic Leukemia Identification System Using Otsu Image segmentation and MSER Approach for Microscopic Smear Image Database. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT) [Internet]. Coimbatore: IEEE; 2018:267–272. Available from: https://doi.org/10.1109/ICICCT.2018.8473101
Bhattacharjee R, Saini LM. Detection of Acute Lymphoblastic Leukemia using watershed transformation technique. In: 2015 International Conference on Signal Processing, Computing and Control (ISPCC) [Internet]. Waknaghat: IEEE; 2015:383–386. Available from: https://doi.org/10.1109/ISPCC.2015.7375060
Shinde S, Sharma N, Bansod P, Singh M, et al. Automated Nucleus Segmentation of Leukemia Blast Cells : Color Spaces Study. In: 2nd International Conference on Data, Engineering and Applications (IDEA) [Internet]. Bhopal: IEEE; 2020:1–5. Available from: https://doi.org/10.1109/IDEA49133.2020.9170721
Nor Hazlyna H, Mashor MY, Mokhtar NR, Aimi Salihah AN, et al. Comparison of acute leukemia Image segmentation using HSI and RGB color space. In: 10th International Conference on Information Science, Signal Processing and their Applications (ISSPA 2010) [Internet]. Kuala Lumpur: IEEE; 2010:749–752. Available from: https://doi.org/10.1109/ISSPA.2010.5605410
Inbarani H H, Azar AT, G J. Leukemia Image Segmentation Using a Hybrid Histogram-Based Soft Covering Rough K-Means Clustering Algorithm. Electronics [Internet]. 2020;9(1):188. Available from: https://doi.org/10.3390/electronics9010188
Asadi F, Putra FM, Indah Sakinatunnisa M, Syafria F, et al. Implementation of Backpropagation Neural Network and Blood Cells Imagery Extraction for Acute Leukemia Classification. In: 2017 5th International Conference on Instrumentation, Communications, Information Technology, and Biomedical Engineering (ICICI-BME) [Internet]. Bandung: IEEE; 2017:106–110. Available from: https://doi.org/10.1109/ICICI-BME.2017.8537755
Gupta A, Gupta R. SN-AM Dataset: White Blood Cancer Dataset of B-ALL and MM for Stain Normalization [Data set]. The Cancer Imaging Archive; 2019. Available from: https://doi.org/10.7937/tcia.2019.of2w8lxr
Soille P. Morphological Image Analysis: Principles and Applications. 2nd ed. Berlin, Heidelberg: Springer; 2004. 392p.
Moshavash Z, Danyali H, Helfroush MS. An Automatic and Robust Decision Support System for Accurate Acute Leukemia Diagnosis from Blood Microscopic Images. J Digit Imaging [Internet]. 2018;31(5):702–717. Available from: https://doi.org/10.1007/s10278-018-0074-y
Gonzalez RC, Woods RE. Digital Image Processing. 4th ed. New York: Pearson; 2018. 1168p.
R Core Team, R. A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna [Internet]. 2016. Available from: https://www.R-project.org/
Kassambara A, Mundt F. factoextra: Extract and Visualize the Results of Multivariate Data Analyses [Internet]. 2020. Available from: https://cran.r-project.org/package=factoextra
Venables WN, Ripley BD. Modern Applied Statistics with S [Internet]. 4th ed. New York: Springer; 2002. 516p. Available from: https://doi.org/10.1007/978-0-387-21706-2
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Revista Mexicana de Ingeniería Biomédica
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.