Selección de Características de la Actividad Motora en Intervalos de Tiempo con Algoritmos Genéticos para la Detección de Depresión

Autores/as

DOI:

https://doi.org/10.17488/RMIB.44.4.3

Palabras clave:

actividad motora, algoritmos genéticos, depresión, inteligencia artificial, selección de características

Resumen

Se estima que la depresión afecta a más de 300 millones de personas en el mundo. Desafortunadamente, el método de evaluación psiquiátrica actual requiere un gran esfuerzo por parte de los médicos para recopilar información completa. Objetivo. Determinar los intervalos de tiempo óptimos para detectar depresión mediante algoritmos genéticos y técnicas de aprendizaje automático, a partir de las lecturas de actividad motora de 55 sujetos durante una semana en intervalos de un minuto. Los intervalos de tiempo con mejor desempeño en la detección de depresión en individuos fueron seleccionados aplicando algoritmos genéticos. Metodología. Se evaluaron 385 observaciones de los sujetos de estudio, obteniendo una precisión del 83.0 % con Regresión Logística (LR). Conclusión. Existe una relación entre la actividad motora y las personas con depresión ya que es posible detectarla utilizando técnicas de aprendizaje automático. Sin embargo, los cambios en las variables de los intervalos de tiempo podrían establecerse como factores clave ya que en diferentes momentos podrían dar buenos o malos resultados debido a que la actividad motora en los pacientes podría llegar a variar. No obstante, los resultados presentan una primera aproximación para el desarrollo de herramientas que ayuden al diagnóstico oportuno y objetivo de la depresión.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

E. Garcia-Ceja, M. Riegler, P. Jakobsen, J. Tørresen, T. Nordgreen, K. J. Oedegaard, O. Bernt Fasmer, “Depresjon: A motor activity database of depression episodes in unipolar and bipolar patients,” in MMSys '18: Proceedings of the 9th ACM Multimedia Systems Conference, Amsterdam, Netherlands, 2018, pp. 472-477, doi: https://doi.org/10.1145/3204949.3208125

S. Berenzon, M. A. Lara, R. Robles, and M. E. Medina-Mora, “Depresión: Estado del conocimiento y la necesidad de políticas públicas y planes de acción en méxico,” Salud Publica Mex., vol. 55, no. 1, pp. 74-80, Jan.-Feb. 2013, doi: https://doi.org/10.1590/s0036-36342013000100011

R. I. Shader, “COVID-19 and Depression,” Clin. Ther., vol. 42, no. 6, pp. 962-963, Jun. 2020, doi: https://doi.org/10.1016/j.clinthera.2020.04.010

S. Khairuddin, S. Ahmad, A. H. Embong, N. N. W. N. Hashim, T. M. K. Altamas, S. N. S. Badaruddin, S. S. Hassan, “Classification of the Correct Quranic Letters Pronunciation of Male and Female Reciters,” IOP Conf. Ser.: Mater. Sci., vol. 260, art. no. 012004, 2017, doi: https://doi.org/10.1088/1757-899X/260/1/012004

S. A. Montgomery and M. Asberg, “A new depression scale designed to be sensitive to change,” Br. J. Psychiatry, vol. 134, no. 4, pp. 382-389, Apr. 1979, doi: https://doi.org/10.1192/bjp.134.4.382

C. J. Hawley, T. M. Gale, and T. Sivakumaran, “Defining remission by cut off score on the MADRS: Selecting the optimal value,” J. Affect. Disord., vol. 72, no. 2, pp. 177-184, Nov. 2002, doi: https://doi.org/10.1016/s0165-0327(01)00451-7

M. J. Müller, H. Himmerich, B. Kienzle, and A. Szegedi, “Differentiating moderate and severe depression using the Montgomery-Åsberg depression rating scale (MADRS),” J. Affect. Disord., vol. 77, no. 3, pp. 255-260, Dec. 2003, doi: https://doi.org/10.1016/s0165-0327(02)00120-9

F. J. Penedo and J. R. Dahn, “Exercise and well-being: A review of mental and physical health benefits associated with physical activity,” Curr. Opin. Psychiatry, vol. 18, no. 2, pp. 189-193, Mar. 2005, doi: https://doi.org/10.1097/00001504-200503000-00013

C. Bourguignon and K. F. Storch, “Control of rest: Activity by a dopaminergic ultradian oscillator and the circadian clock,” Front. Neurol., vol. 8, art. no. 614, Nov. 2017, doi: https://doi.org/10.3389/fneur.2017.00614

L. B. Alloy, T. H. Ng, M. K. Titone, and E. M. Boland, “Circadian Rhythm Dysregulation in Bipolar Spectrum Disorders,” Curr. Psychiatry Rep., vol. 19, no. 4, art. no. 21, Apr. 2017, doi: https://doi.org/10.1007/s11920-017-0772-z

J. O. Berle, E. R. Hauge, K. J. Oedegaard, F. Holsten, O. B. Fasmer, “Actigraphic registration of motor activity reveals a more structured behavioural pattern in schizophrenia than in major depression,” BMC Res. Notes, vol. 3, art. no. 149, May 2010, doi: https://doi.org/10.1186%2F1756-0500-3-149

E. Garcia-Ceja et al., “Motor Activity Based Classification of Depression in Unipolar and Bipolar Patients,” in 2018 IEEE 31st International Symposium on Computer-Based Medical Systems (CBMS), Karlstad, Sweden, 2018, pp. 316-321, doi: https://doi.org/10.1109/CBMS.2018.00062

L. A. Zanella-Calzada, C. E. Galván-Tejada, N. M. Cávez-Lamas, M. C. Gracia-Cortés, R. Magallanes-Quintanar, J. M. Celaya-Padilla, J. I. Galván-Tejada, H. Gamboa-Rosales, “Feature extraction in motor activity signal: Towards a depression episodes detection in unipolar and bipolar patients,” Diagnostics, vol. 9, no, 1, art. no. 8, Jan. 2019, doi: https://doi.org/10.3390/diagnostics9010008

C. E. Galván-Tejada, L. A. Zanella-Calzada, H. Gamboa-Rosales, J. I. Galván-Tejada, N. M. Chávez-Lamas, M. C. Gracia-Cortés, R. Magallanes-Quintanar, J. M. Celaya-Padilla, “Depression Episodes Detection in Unipolar and Bipolar Patients: A Methodology with Feature Extraction and Feature Selection with Genetic Algorithms Using Activity Motion Signal as Information Source,” Mob. Inf. Syst., vol. 2019, art. no. 8269695, 2019, doi: https://doi.org/10.1155/2019/8269695

J. I. Frogner, F. M. Noori, P. Halvorsen, S. A. Hicks, E. Garcia-Ceja, J. Torresen, M. A. Riegler, “One-dimensional convolutional neural networks on motor activity measurements in detection of depression,” in HealthMedia '19: Proceedings of the 4th International Workshop on Multimedia for Personal Health & Health Care, Nice, Francia, 2019, pp. 9-15, doi: https://doi.org/10.1145/3347444.3356238

J. G. Rodríguez-Ruiz, C. E. Galván-Tejada, L. A. Zanella-Calzada, J. M. Celaya-Padilla, et al., “Comparison of night, day and 24 h motor activity data for the classification of depressive episodes,” Diagnostics, vol. 10, no. 3, art. no. 162, Mar. 2020, doi: https://doi.org/10.3390/diagnostics10030162

J. G. Rodríguez-Ruiz, C. E. Galván-Tejada, H. Luna-García, H. Gamboa-Rosales, J. M. Celaya-Padilla, J. G. Arceo-Olague, J. I. Galván Tejada, “Classification of Depressive and Schizophrenic Episodes Using Night-Time Motor Activity Signal,” Healthcare, vol. 10, no. 7, art. no. 1256, Jul. 2022, doi: https://doi.org/10.3390/healthcare10071256

P. Jakobsen, E. Garcia-Ceja, M. Riegler, L. A. Stabell, T. Nordgreen, J. Torresen, O. B. Fasmer, K. J. Oedegaard, “Applying machine learning in motor activity time series of depressed bipolar and unipolar patients compared to healthy controls,” PLoS One, vol. 15, no. 8, art. no. e0231995, Ago. 2020, doi: https://doi.org/10.1371/journal.pone.0231995

H. Kour and M. K. Gupta, “An hybrid deep learning approach for depression prediction from user tweets using feature-rich CNN and bi-directional LSTM,” Multimed. Tools Appl., vol. 81, no. 17, pp. 23649-23685, 2022, doi: https://doi.org/10.1007/s11042-022-12648-y

S. L. Pacheco-González, L. A. Zanella-Calzada, C. E. Galván-Tejada, N. M. Chávez-Lamas, J. F. Rivera-Gómez, and J. I. Galván-Tejada, “Evaluation of Five Classifiers for Depression Episodes Detection,” Res. Comput. Sci., vol. 148, no. 10, pp. 129-138, 2019, doi: https://doi.org/10.13053/rcs-148-10-11

M. Raihan, A. K. Bairagi, and S. Rahman, “A Machine Learning Based Study to Predict Depression with Monitoring Actigraph Watch Data,” in 2021 12th International Conference on Computing Communication and Networking Technologies (ICCCNT), Kharagpur, India, 2021, pp. 1-5, doi: https://doi.org/10.1109/ICCCNT51525.2021.9579614

P. M. Singh and P. S. Sathidevi, “Design and Implementation of a Machine Learning-Based Technique to Detect Unipolar and Bipolar Depression Using Motor Activity Data,” in Smart Trends in Computing and Communications. Lecture Notes in Networks and Systems, Nevada, USA, 2022, pp. 99-107, doi: https://doi.org/10.1007/978-981-16-4016-2_10

S. Katoch, S. S. Chauhan, and V. Kumar, “A review on genetic algorithm: past, present, and future,” Multimed. Tools Appl., vol. 80, no. 5, pp. 8091-8126, 2021, doi: https://doi.org/10.1007/s11042-020-10139-6

V. Trevino and F. Falciani, “GALGO: An R package for multivariate variable selection using genetic algorithms,” Bioinformatics, vol. 22, no. 9, pp. 1154-1156, May 2006, doi: https://doi.org/10.1093/bioinformatics/btl074

T. Jayalakshmi and A. Santhakumaran, “Statistical Normalization and Back Propagationfor Classification,” Int. J. Comput. Theory Eng., vol. 3, no. 1, pp. 89-93, 2011, doi: https://doi.org/10.7763/IJCTE.2011.V3.288

A. A. AlBeladi and A. H. Muqaibel, “Evaluating compressive sensing algorithms in through-the-wall radar via F1-score,” Int. J. Signal Imaging Syst. Eng., vol. 11, no. 3, pp. 164-171, 2018, doi: https://doi.org/10.1504/IJSISE.2018.093268

J. M. Bland and D. G. Altman, “Statistical methods for assessing agreement between two methods of clinical measurement,” Lancet, vol. 1, no. 8476, pp. 307-310, Feb. 1986, doi: https://doi.org/10.1016/S0140-6736%2886%2990837-8

N. Banaei, J. Moshfegh, A. Mohseni-Kabir, J. M. Houghton, Y. Sun, and B. Kim, “Machine learning algorithms enhance the specificity of cancer biomarker detection using SERS-based immunoassays in microfluidic chips,” RSC Adv., vol. 9, no. 4, pp. 1859-1868, 2019, doi: https://doi.org/10.1039/C8RA08930B

A. P. Bradley, “The use of the area under the ROC curve in the evaluation of machine learning algorithms,” Pattern Recognit., vol. 30, no. 7, pp. 1145–1159, Jul.1997, doi: https://doi.org/10.1016/S0031-3203(96)00142-2

C. H. Espino-Salinas, C. E. Galván-Tejada, H. Luna-García, H. Gamboa-Rosales, J. M. Celaya-Padilla, L. A. Zanella-Calzada, and J. I. Galván-Tejada, “Two-Dimensional Convolutional Neural Network for Depression Episodes Detection in Real Time Using Motor Activity Time Series of Depresjon Dataset,” Bioengineering, vol. 9, no. 9, art. no. 458, Sep. 2022, doi: https://doi.org/10.3390/bioengineering9090458

O. Caelen, “A Bayesian interpretation of the confusion matrix,” Ann. Math. Artif. Intell., vol. 81, pp. 429-450, Sep. 2017, doi: https://doi.org/10.1007/s10472-017-9564-8

D. Chicco and G. Jurman, “The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation,” BMC Genomics, vol. 21, no. 1, art. no. 6, Jan. 2020, doi: https://doi.org/10.1186/s12864-019-6413-7

D. Chicco, M. J. Warrens, and G. Jurman, “The Matthews Correlation Coefficient (MCC) is More Informative Than Cohen’s Kappa and Brier Score in Binary Classification Assessment,” IEEE Access, vol. 9, pp. 78368-78381, 2021, doi: https://doi.org/10.1109/ACCESS.2021.3084050

A. Kumar, S. R. Sangwan, A. Arora, and V. G. Menon, “Depress-DCNF: A deep convolutional neuro-fuzzy model for detection of depression episodes using IoMT,” Appl. Soft Comput., vol. 122, art. no. 108863, 2022, doi: https://doi.org/10.1016/j.asoc.2022.108863

R. Ghate, N. Kalnad, R. Walambe, and K. Kotecha, “Transfer Learning for Real-time Deployment of a Screening Tool for Depression Detection Using Actigraphy,” in UKSim-AMSS 25th International Conference on Modelling & Simulation, Cambridge, United Kingdom, 2023, pp. 1-5, doi: https://doi.org/10.48550/arXiv.2303.07847

M. Zakariah and Y. A. Alotaibi, “Unipolar and Bipolar Depression Detection and Classification Based on Actigraphic Registration of Motor Activity Using Machine Learning and Uniform Manifold Approximation and Projection Methods,” Diagnostics, vol. 13, no. 14, art. no. 2323, Jul. 2023, doi: https://doi.org/10.3390/diagnostics13142323

Descargas

Publicado

2023-12-20

Cómo citar

Espino-Salinas, C. H., Galván-Tejada, C. E., Sánchez-Reyna , A. G., Luna-García, H., Gamboa-Rosales, . H., Morgan-Benita, J. A., Celaya-Padilla, J. M., & Galván-Tejada, J. I. (2023). Selección de Características de la Actividad Motora en Intervalos de Tiempo con Algoritmos Genéticos para la Detección de Depresión. Revista Mexicana De Ingenieria Biomedica, 44(4), 38–52. https://doi.org/10.17488/RMIB.44.4.3

Citas Dimensions