HIV Mathematical Model considering Antiretroviral Administration
DOI:
https://doi.org/10.17488/RMIB.38.3.5Keywords:
mathematical model, ODE, HIV, antiretroviral, simulationAbstract
In this work, we present a proposal of a mathematical model of four ordinary differential equations that describe the evolution of HIV in an HIV-positive individual and the effect of an antiretroviral in the process of virus replication in CD4+ T cells. In order to determine the long-term effectiveness of the drug, the cases with and without antiretro-viral treatment are analyzed to observe the effect on the population of healthy and infected CD4+ T cells. With our mathematical model, we are able to obtain a case where the antiretroviral allows a clinically healthy concentration of uninfected CD4+ T cells. Additionally, by applying the Compact Invariant Sets method we determine maximum values for the concentration of free HIV and both cells populations, healthy and infected. Finally, we perform nu-merical simulations in order to illustrate our results in the temporal plane, we plot the solutions of the system and their corresponding upper bounds, the latter allow us to define the maximum values of the HIV concentration in the bloodstream and the infected and healthy cells populations.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.