Development of a Myoelectric-Controlled Prosthesis for Transradial Amputees
DOI:
https://doi.org/10.17488/RMIB.38.3.8Keywords:
prosthesis, electromyography, bayesian classifier, artificial neural networkAbstract
In this paper, the development and operation of a robotic prosthesis for transradial amputees is presented. This prosthesis consists in a 3D-printed prototype with two degrees of freedom, allowing the user to perform grip tasks and to orientate objects through pronation and supination movements. Two classifiers were used independently to control the prosthesis: a bayesian classifier implemented in an Arduino device and an artificial neural network implemented in MATLAB® software; both classify movements through the acquisition, processing and extraction of features from the electromyography signal. The bayesian classifier and the artificial neural network achieved an efficiency of 97% and 100%, respectively, which shows that the extracted features were suitable for the proposed electromyography classification. A completely functional 3D-printed myoelectric prosthesis was achieved, and it represents a low-cost alternative to those existent in the current market.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.