Detection of the blood flow direction using heterodyne demodulation for a Doppler ultrasound system and its validation by simulation
Abstract
Doppler ultrasound blood flow measurement techniques have been widely used for the diagnosis of vascular diseases. In particular, some Doppler systems which may be able to determine the blood flow direction use signals produced by the homodyne quadrature demodulation technique. This approach has a major disadvantage since it has to process two channels (phase and quadrature), to equalize them (in amplitude) and to maintain these characteristics throughout the complete signal bandwidth.
The work presented here, proposes an alternative method to determine the blood flow direction using heterodyne demodulation. The technique involves shifting the complete band of frequencies (where information of interest lies), at least a frequency equal to the bandwidth of the Doppler signal. This method simplifies the analog stage for the acquisition of the Doppler signal since it only needs to process one channel. Results of simulations show the effectiveness of the approach by determining the blood flow direction efficiently, in the frequency domain. It also reduces the generation of artifacts, in the band of interest, caused by differences in the phase and quadrature channels.
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.