Segmentación adaptativa de lesiones isquémicas cerebrales a partir de imágenes de difusión de resonancia magnética

Authors

  • Nidiyare Hevia Montiel. Laboratorio de Investigación en Neuroimagenología (LINI), Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana –Iztapalapa
  • Juan Ramón Jiménez Alaniz. Laboratorio de Investigación en Neuroimagenología (LINI), Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana –Iztapalapa
  • Verónica Medina Bañuelos. Laboratorio de Investigación en Neuroimagenología (LINI), Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana –Iztapalapa
  • Óscar Yáñez Suárez. Laboratorio de Investigación en Neuroimagenología (LINI), Departamento de Ingeniería Eléctrica, Universidad Autónoma Metropolitana –Iztapalapa
  • Charlotte Rosso. Laboratorio de Neurociencias Cognitivas & Imagenología Médica, CNRS UPR640-LENA; AP-HP, Hospital La Salpêtrière; Universidad Pierre & Marie Curie. Unidad de Urgencias Cerebro-Vasculares. Hospital La Salpêtrière.
  • Yves Samson. Unidad de Urgencias Cerebro-Vasculares. Hospital La Salpêtrière.
  • Sylvain Baillet. Laboratorio de Neurociencias Cognitivas & Imagenología Médica, CNRS UPR640-LENA; AP-HP, Hospital La Salpêtrière; Universidad Pierre & Marie Curie.

Abstract

 

The magnetic resonance imagenology (MRI) has become in one of the most important medical image modalities for diagnosis, prevention and monitoring several medical disorders. In particular, the diffusion weighted imaging (DWI) is extremely sensitive to achieve an early detection of ischemic changes in the acute phase of a brain infarct. In this study, it is presented the application of an adaptive segmentation method which has been validated and developed previously. The method uses a no parametric estimation based on the bandwidths or variable intensity radius. The main objective of the proposal method is to quantify the brain region which has been affected by an infarct but using the information contained in the DWI images. The segmentation algorithm with constant parameters was applied in the whole set of real images belonging to the previously acquired database. A comparison between the adaptive technique of DWI images segmentation and no parametric method with fixed radius was developed. This comparative study shows the benefits achieved by the adaptive method: the automatically processing and the robustness under different brain ischemical regions in acute phase. Even the sensitiveness is improved because the adaptive method was able to obtain the segmentation of images with small affected volumes (< 1 cm3). Comparing with the reference control segmentation method, the considered methods evaluated in this study improved the joint correlation: r=0.8863 for the fixed radious and r=0.9693 when the radious is variable. The adaptive method showed the best results among the other alternatives. Indeed, the averaged tanimoto index obtained in the adaptive version of the segmentation algorithm was superior to the one achieved when the radius was fixed (0.729 and 0.638 respectively)

Downloads

Download data is not yet available.

Published

2009-10-02

How to Cite

Hevia Montiel., N., Jiménez Alaniz., J. R., Medina Bañuelos., V., Yáñez Suárez., Óscar, Rosso., C., Samson., Y., & Baillet., S. (2009). Segmentación adaptativa de lesiones isquémicas cerebrales a partir de imágenes de difusión de resonancia magnética. Revista Mexicana De Ingenieria Biomedica, 30(2), 16. Retrieved from http://rmib.mx/index.php/rmib/article/view/317

Issue

Section

Research Articles

Dimensions Citation