Cranial malformations classification caused by primary craniosynotosis using nonlinear kernels
Abstract
Single-suture craniosynostosis (SSC) is the pathologic condition ofpremature fusion of a calvarial suture. Premature fusion produces significant cranial deformities and is associated with an increased risk of cognitive deficits and neurobehavioral impairments. For these reasons, SSC represents an important area of research that requires effective methods for characterizing cranial morphology. In this paper we evaluate a new approach that combines the use of nonlinear kernels, co-occurrences of skull shape features, a new feature selection process and standard nonlinear dimensionality reduction techniques, as a means to classify cranial malformations due to SSC using computed tomography (CT) imaging. CT images were obtained from CT studies of 102 sagittal synostosis crania, 42 metopic synostosis crania, 12 unicoronal synostosis crania and 65 nonsynostotic skulls. We validate our approach with an extensive series of experiments and show that our proposed approach outperforms the classification performance of previously published techniques, achieving classification rates above 95%.
Downloads
Downloads
Published
How to Cite
Issue
Section
License
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.