A Practical Review of the Biomechanical Parameters Commonly Used in the Assessment of Human Gait

Authors

  • Juan Carlos Arellano-González División de Ingenierías Campus Irapuato Salamanca - Universidad de Guanajuato, México
  • Hugo Iván Medellín-Castillo Facultad de Ingeniería - Universidad Autónoma de San Luis Potosí, México https://orcid.org/0000-0002-2827-9547
  • J. Jesús Cervantes-Sánchez División de Ingenierías Campus Irapuato Salamanca, Universidad de Guanajuato, México https://orcid.org/0000-0002-7269-8650
  • Agustín Vidal-Lesso División de Ingenierías Campus Irapuato Salamanca - Universidad de Guanajuato, México https://orcid.org/0000-0002-7594-1927

DOI:

https://doi.org/10.17488/RMIB.42.3.1

Keywords:

Gait analysis, Healthy gait, Pathological gait, Gait parameters

Abstract

The analysis of human gait is a potential diagnostic instrument for the early and timely identification of pathologies and disorders. It can also supply valuable data for the development of biomedical devices such as prostheses, orthoses, and rehabilitation systems. Although various research papers in the literature have used human gait analyses, few studies have focused on the biomechanical parameters used. This paper presents an extensive review and analysis of the main biomechanical parameters commonly used in the human gait study. The aim is to provide a practical guide to support and understand of the choices and selection of the most appropriate biomechanical parameters for gait analysis. A comprehensive search in scientific databases was conducted to identify, review and analyze the academic work related to human gait analysis. From this search, the main biomechanical parameters used in healthy and pathological gait studies were identified and analyzed. The results have revealed that the spatiotemporal and angular gait parameters are the most used in the assessment of healthy and pathological human gait.

Downloads

Download data is not yet available.

References

Detrembleur C, van den Hecke A, Dierick F. Motion of the body centre of gravity as a summary indicator of the mechanics of human pathological gait. Gait Posture [Internet]. 2000;12(3):243–250. Available from: https://doi.org/10.1016/S0966-6362(00)00081-3

Khokhlova M, Migniot C, Morozov A, Sushkova O, et al. Normal and pathological gait classification LSTM model. Artif Intell Med [Internet]. 2019;94:54–66. Available from: https://doi.org/10.1016/j.artmed.2018.12.007

Moreno-Hernández A, Rodríguez-Reyes G, Quiñones-Urióstegui I, Núñez-Carrera L, et al. Temporal and spatial gait parameters analysis in non-pathological Mexican children. Gait Posture [Internet]. 2010;32(1):78–81. Available from: https://doi.org/10.1016/j.gaitpost.2010.03.010

Bruening DA, Ridge ST. Automated event detection algorithms in pathological gait. Gait Posture [Internet]. 2014;39(1):472–477. Available from: https://doi.org/10.1016/j.gaitpost.2013.08.023

Phinyomark A, Osis ST, Hettinga BA, Kobsar D, et al. Gender differences in gait kinematics for patients with knee osteoarthritis. BMC Musculoskelet Disord [Internet]. 2016;17:157. Available from: https://doi.org/10.1186/s12891-016-1013-z

Smith Y, Louw Q, Brink Y. The three-dimensional kinematics and spatiotemporal parameters of gait in 6–10 years old typically developed children in the cape metropole of South Africa – a pilot study. BMC Pediatr [Internet]. 2016;16:200. Available from: https://doi.org/10.1186/s12887-016-0736-1

Washabaugh EP, Augensteina TE, Krishnan C. Functional resistance training during walking: Mode of application differentially affects gait biomechanics and muscle activation patterns. Gait Posture [Internet]. 2020;75:129–136. Available from: https://doi.org/10.1016/j.gaitpost.2019.10.024

Simon SR. Quantification of human motion: gait analysis-benefits and limitations to its application to clinical problems. J Biomech [Internet]. 2004;37(12):1869–1880. Available from: https://doi.org/10.1016/j.jbiomech.2004.02.047

Naili JE, Wretenberg P, Lindgren V, Iversen MD, et al. Improved knee biomechanics among patients reporting a good outcome in knee-related quality of life one year after total knee arthroplasty. BMC Musculoskelet Disord [Internet]. 2017;18:122. Available from: https://doi.org/10.1186/s12891-017-1479-3

Hussain S, Xie SQ, Jamwal PK. Control of a robotic orthosis for gait rehabilitation. Robot Auton Syst [Internet]. 2013;61(9):911–919. Available from: https://doi.org/10.1016/j.robot.2013.01.007

Khas KS, Pandey PM, Ray AR. Development of an orthosis for simultaneous three-dimensional correction of clubfoot deformity. Clin Biomech [Internet]. 2018;51:67–75. Available from: https://doi.org/10.1016/j.clinbiomech.2017.12.002

Arnez-Paniagua V, Rifaï H, Amirat Y, Ghedira M, et al. Adaptive control of an actuated ankle foot orthosis for paretic patients. Control Eng Pract [Internet]. 2019;90:207–220. Available from: https://doi.org/10.1016/j.conengprac.2019.06.003

Kobayashi T, Orendurff MS, Singer ML, Gao F, et al. Contribution of ankle-foot orthosis moment in regulating ankle and knee motions during gait in individuals post-stroke. Clin Biomech [Internet]. 2017;45:9–13. Available from: https://doi.org/10.1016/j.clinbiomech.2017.04.002

Segal AD, Orendurff MS, Klute GK, McDowell ML, et al. Kinematic and kinetic comparisons of transfemoral amputee gait using C-Leg® and Mauch SNS® prosthetic knees. J Rehabil Res Dev [Internet]. 2006;43(7):857–870. Available from: https://doi.org/10.1682/jrrd.2005.09.0147

Amemiya A, Noguchi H, Oe M, Ohashi Y, et al. Elevated plantar pressure in diabetic patients and its relationship with their gait features. Gait Posture [Internet]. 2014;40(3):408–414. Available from: https://doi.org/10.1016/j.gaitpost.2014.05.063

Bejek Z, Paróczai R, Illyés Á, Kocsis L, et al. Gait parameters of patients with osteoarthritis of the knee joint. Phys Educ Sport [Internet]. 2006;4(1): 9–16. Available from: http://facta.junis.ni.ac.rs/pe/pe2006/pe2006-02.pdf

Andriacchi TP, Galante JO, Fermier RW. The influence of total knee replacement design on walking and stair-climbing. J Bone Joint Surg Am [Internet]. 1982;64(9):1328–1335. Available from: https://doi.org/10.2106/00004623-198264090-00008

Gök H, Ergin S, Yavuzer G. Kinetic and kinematic characteristic of gait in patients with medial knee arthrosis. Acta Orthop Scand [Internet]. 2002;73(6): 647–652. Available from: https://doi.org/10.3109/17453670209178029

Tangen GG, Bergland A, Engedal K, Mengshoel AM. The importance of parkinsonian signs for gait and balance in patients with Alzheimer’s disease of mild degree. Gait Posture [Internet]. 2017;51:159–161. Available from: https://doi.org/10.1016/j.gaitpost.2016.10.009

Axer H, Axer M, Sauer H, Witte OW, et al. Falls and gait disorders in geriatric neurology. Clin Neurol Neurosurg [Internet]. 2010;112(4):265–274. https://doi.org/10.1016/j.clineuro.2009.12.015

Wallard L, Dietrich G, Kerlirzin Y, Brendin J. Effects of robotic gait rehabilitation on biomechanical parameters in the chronic hemiplegic patients. Clin Neurophysiol [Internet]. 2015;45(3):215 –219. Available from: https://doi.org/10.1016/j.neucli.2015.03.002

Van Der Krogt M, Doorenbosch C, Becher J, Harlaar J. P080 Gait patterns vary with walking speed. Gait Posture [Internet]. 2008;28(2S): S49–S118. Available from: https://doi.org/10.1016/S0966-6362(08)70149-8

Afilalo J, Eisenberg MJ, Morin JF, Bergman H, et al. Gait Speed as an Incremental Predictor of Mortality and Major Morbidity in Elderly Patients Undergoing Cardiac Surgery. J Am Coll Cardiol [Internet]. 2010;56(20):1668–1676. Available from: https://doi.org/10.1016/j.jacc.2010.06.039

Mills K, Hunt MA, Ferber R. Biomechanical Deviations During Level Walking Associated With Knee Osteoarthritis: A Systematic Review and Meta-Analysis. Arthritis Care Res [Internet]. 2013;65(10):1643–1665. Available from: https://doi.org/10.1002/acr.22015

Duffell LD, Jordan SJ, Cobb JP, McGregor AH. Gait adaptations with aging in healthy participants and people with knee-joint osteoarthritis. Gait Posture [Internet]. 2017;57:246–251. Available from: https://doi.org/10.1016/j.gaitpost.2017.06.015

Andriacchi TP, Mündermann A. The role of ambulatory mechanics in the initiation and progression of knee osteoarthritis. Curr Opin Rheumatol [Internet]. 2006;18(5):514–518. Available from: https://doi.org/10.1097/01.bor.0000240365.16842.4e

Whittle MW. Clinical gait analysis: A review. Hum Mov Sci [Internet]. 1996;15(3):369–387. Available from: https://doi.org/10.1016/0167-9457(96)00006-1

Arellano-González JC, Medellín-Castillo HI, Cárdenas-Galindo JA. Analysis of the kinematic variation of human gait under different walking conditions using computer vision. RMIB [Internet]. 2017;38(2):437–457. Available from: http://dx.doi.org/10.17488/rmib.38.2.2

Perry J, Burnfield JM. Gait analysis: Normal and pathological function. 2nd ed., New Jersey: SLACK Incorporated; 2010. 551p.

Hicks GE, Sions JM, Coyle PC, Pohlig RT. Altered spatiotemporal characteristics of gait in older adults with chronic low back pain. Gait Posture [Internet]. 2017;55:172–176. Available from: https://doi.org/10.1016/j.gaitpost.2017.04.027

Allet L, Armand S, de Bie RA, Pataky Z, et al. Gait alterations of diabetic patients while walking on different surfaces. Gait Posture [Internet]. 2009;29(3):488–493. Available from: https://doi.org/10.1016/j.gaitpost.2008.11.012

Mummolo C, Mangialardi L, Kim JH. Quantifying Dynamic Characteristics of Human Walking for Comprehensive Gait Cycle. J Biomech Eng [Internet]. 2013;135(9): (9): 091006. Available from: https://doi.org/10.1115/1.4024755

Muro-de-la-Herran A, Garcia-Zapirain B, Mendez-Zorrilla A. Gait Analysis Methods: An Overview of Wearable and Non-Wearable Systems, Highlighting Clinical Applications. Sensors [Internet]. 2014;14(2):3362–3394. Available from: https://doi.org/10.3390/s140203362

Kadaba MP, Ramakrishnan HK, Wootten ME. Measurement of lower extremity kinematics during level walking. J Orthop Res [Internet]. 1990;8(3):383–392. Available from: https://doi.org/10.1002/jor.1100080310

Frigo C, Rabuffetti M, Kerrigan DC, Deming LC, et al. Functionally oriented and clinically feasible quantitative gait analysis method. Med Biol Eng Comput [Internet]. 1998;36(2):179–185. Available from: https://doi.org/10.1007/BF02510740

van den Bogert AJ, Geijtenbeek T, Even-Zohar O, Steenbrink F, et al. A real-time system for biomechanical analysis of human movement and muscle function. Med Biol Eng Comput [Internet]. 2013;51(10):1069–1077. Available from: https://doi.org/10.1007/s11517-013-1076-z

Leardini A, Sawacha Z, Paolini G, Ingrosso S, et al. A new anatomically based protocol for gait analysis in children. Gait Posture [Internet]. 2007;26(4):560–571. Available from: https://doi.org/10.1016/j.gaitpost.2006.12.018

Sholukha V, Bonnechere B, Salvia P, Moiseev F, et al. Model-based approach for human kinematics reconstruction from markerless and marker-based motion analysis systems. J Biomech [Internet]. 2013;46(14):2363–2371. Available from: https://doi.org/10.1016/j.jbiomech.2013.07.037

Benedetti MG, Catani F, Leardini A, Pignotti E, et al. Data management in gait analysis for clinical applications. Clin Biomech [Internet]. 1998;13(3):204–215. Available from: https://doi.org/10.1016/S0268-0033(97)00041-7

Motek. Applications for human movement research and rehabilitation [Internet]; 2021. Available from: http://www.motekmedical.com/

Baker R. Gait analysis methods in rehabilitation. J NeuroEng Rehabil [Internet]. 2006;3:4. Available from: https://doi.org/10.1186/1743-0003-3-4

Khan T, Grenholm P, Nyholm D. Computer Vision Methods for Parkinsonian Gait Analysis: A Review on Patents. Recent Pat Biomed Eng [Internet]. 2013;6(2):97–108. Available from: https://doi.org/10.2174/1874764711306020004

Ali A, Sundaraj K, Ahmad B, Ahmad N, et al. Gait disorder rehabilitation using vision and non-vision based sensors: A systematic review. Bosn J of Basic Med Sci [Internet]. 2012;12(3):193–202. Available from: https://doi.org/10.17305/bjbms.2012.2484

Federolf PA, Boyer KA, Andriacchi TP. Application of principal component analysis in clinical gait research: identification of systematic differences between healthy and medial knee-osteoarthritic gait. J Biomech [Internet]. 2013;46(13):2173–2178. Available from: https://doi.org/10.1016/j.jbiomech.2013.06.032

Stancic I, Supuk TG, Bonkovic M. New Kinematic Parameters for Quantifying Irregularities in the Human and Humanoid Robot Gait. Int J Adv Robot [Internet]. 2017;9(5):1–8. Available from: https://doi.org/10.5772/54563

CAD. Engineering Services, Solutions and services offering [Internet]. 2021; Available from: http://www.cadengineering.co.in/

Bartlett R. Introduction to Sport in Biomechanics: Analyzing Human Movement Patterns. 2nd ed. New York: Taylor & Francis Group; 2007. 292p.

Huston RL. Principles of biomechanics. 1st ed. NW: Taylor & Francis Group; 2009.

Knudson D. Fundamentals of biomechanics. 2nd ed. California: Springer; 2007. 319p.

Center for Disease Control and Prevention. National Center for Health Statistics [Internet]. 2021; Available from: https://www.cdc.gov/nchs/index.htm

Sánchez-Lacuesta J, Prat Pastor JM, Hoyos Fuentes JV, Viosca Herrero E, et al. Biomecánica de la marcha humana patológica. 2nd ed. España: Instituto de Biomecánica de Valencia; 1999. 444p.

Arellano-González JC, Medellín-Castillo HI, Cervantes-Sánchez JJ. Identification and analysis of the biomechanical parameters used for the assessment of normal and pathological gait: A literature review. Proceedings of the ASME 2019 International Mechanical Engineering Congress and Exposition. Volume 3: Biomedical and Biotechnology Engineering [Internet]. Salt Lake City: ASME; 2019:11-17. Available from: https://doi.org/10.1115/IMECE2019-10140

Granat MH, Maxwell DJ, Bosch CJ, Ferguson AC, et al. A body-worn gait analysis system for evaluating hemiplegic gait. Med Eng Phys [Internet]. 1995;17(5):390–394. Available from: https://doi.org/10.1016/1350-4533(95)97321-F

Di Nardo F, Mengarelli A, Malavolta M, Strazza A, et al. Ankle muscle co-contractions in Winters I hemiplegic children during gait. Gait Posture [Internet]. 2017;57(S3):4–5. Available from: https://doi.org/10.1016/j.gaitpost.2017.07.051

Gross R, Leboeuf F, Hardouin JB, Perrouin-Verbe B, et al. Does muscle coactivation influence joint excursions during gait in children with and without hemiplegic cerebral palsy? Relationship between muscle coactivation and joint kinematics. Clin Biomech [Internet]. 2015;30(10):1088–1093. Available from: https://doi.org/10.1016/j.clinbiomech.2015.09.001

Hussein ZA, Abd-Elwahab MS, El-Shennawy SAW. Effect of arm cycling on gait of children with hemiplegic cerebral palsy. Egypt J Med Hum Genet [Internet]. 2014;15(3):273–279. Available from: https://doi.org/10.1016/j.ejmhg.2014.02.008

de Kruijf M, Verlinden VJA, Huygen FJPM, Hofman A, et al. Chronic joint pain in the lower body is associated with gait differences independent from radiographic osteoarthritis. Gait Posture [Internet]. 2015;42(3):354–359. Available from: https://doi.org/10.1016/j.gaitpost.2015.06.193

Vickers J, Reed A, Decker R, Conrad BP, et al. Effect of investigator observation on gait parameters in individuals with and without chronic low back pain. Gait Posture [Internet]. 2015;53:35–40. Available from: https://doi.org/10.1016/j.gaitpost.2017.01.002

Stewart S, Morpeth T, Dalbeth N, Vandal AC, et al. Foot-related pain and disability and spatiotemporal parameters of gait during self-selected and fast walking speeds in people with gout: A two-arm cross sectional study. Gait Posture [Internet]. 2016;44:18–22. Available from: https://doi.org/10.1016/j.gaitpost.2015.11.004

Phillips A, McClinton S. Gait deviations associated with plantar heel pain: A systematic review. Clin Biomech [Internet]. 2017;42:55–64. Available from: https://doi.org/10.1016/j.clinbiomech.2016.12.012

Koutakis P, Pipinos II, Myers SA, Stergiou N, et al. Joint torques and powers are reduced during ambulation for both limbs in patients with unilateral claudication. J Vasc Surg [Internet]. 2010;51(1):80–88. Available from: https://doi.org/10.1016/j.jvs.2009.07.117

Wurdeman SR, Koutakis P, Myers SA, Johanning JM, et al. Patients with peripheral arterial disease exhibit reduced joint powers compared to velocity-matched controls. Gait Posture [Internet]. 2012;36(3):506–509. Available from: https://doi.org/10.1016/j.gaitpost.2012.05.004

Scherer SA, Bainbridge JS, Hiatt WR, Regensteiner JG. Gait characteristics of patients with claudication. Arch Phys Med Rehabil [Internet]. 1998;79(5):529–531. Available from: https://doi.org/10.1016/s0003-9993(98)90067-3

Pérez-Orive J, Pichardo AE, Chávez-Arias D. Análisis de parámetros cinemáticos de la marcha normal. Rev Mex Ortop Traum [Internet]. 1998; 12(5):372–376.

Dankloff Mora C, Rodríguez R, Fernández-Valencia R. Estudio morfofuncional de la marcha humana. J Biomecánica [Internet]. 1993;1(1):54–58. Available from: http://hdl.handle.net/2099/6593

Díaz-Novo D, López-Ríos N, Montoya-Padrón A, Carvajal Fals H, et al. Evaluación preliminar de la marcha en individuos sanos. Universidad, Ciencia y Tecnología [Internet]. 2007;11(44):135–140. Available from: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S1316-48212007000300005

Galli M, Cimolin V, Rigoldi C, Tenore N, et al. Gait patterns in hemiplegic children with Cerebral Palsy: Comparison of right and left hemiplegia. Res Dev Disabil [Internet]. 2010;31(6):1340–1345. Available from: https://doi.org/10.1016/j.ridd.2010.07.007

Spaich EG, Hinge HH, Arendt-Nielsen L, Andersen OK. Modulation of the withdrawal reflex during hemiplegic gait: Effect of stimulation site and gait phase. Clin Neurophysiol [Internet] 2006;117(11):2482–2495. Available from: https://doi.org/10.1016/j.clinph.2006.07.139

Ambrose A, LeValley A, Verghese J. A comparison of community-residing older adults with frontal and parkinsonian gaits. J Neurol Sci [Internet]. 2006;248(1-2):215–218. Available from: https://doi.org/10.1016/j.jns.2006.05.035

You-Yin C, Chien-Wen C, Sheng-Huang L, Hsin-Yi L, et al. A vision-based regression model to evaluate Parkinsonian gait from monocular image sequences. Expert Syst Appl [Internet]. 2012;39(1):520–526. Available from: https://doi.org/10.1016/j.eswa.2011.07.042

Minji S, Sang-Myung C, Changhong Y, Youkyung K, et al. Impacts of freezing of gait on forward and backward gait in Parkinson’s Disease. Gait Posture [Internet]. 2018;61:320–324. Available from: https://doi.org/10.1016/j.gaitpost.2018.01.034

Shih-Lin C, Shinn-Zong L, Chung-Chao L, Yi-Sheng S, et al. The efficacy of quantitative gait analysis by the GAITRite system in evaluation of parkinsonian bradykinesia. Parkinsonism Relat Disord [Internet]. 2006;12(7):438–442. Available from: https://doi.org/10.1016/j.parkreldis.2006.04.004

Volpea D, Pavan D, Morris M, Guiotto A, et al. Underwater gait analysis in Parkinson’s disease. Gait Posture [Internet]. 2017;52:87–94. Available from: https://doi.org/10.1016/j.gaitpost.2016.11.019

Denton AL, Hough AD, Freeman JA, Marsden JF. Effects of superficial heating and insulation on walking speed in people with hereditary and spontaneous spastic paraparesis: A randomized crossover study. Ann Phys Rehabil Med [Internet]. 2018;61(2):72–77. Available from: https://doi.org/10.1016/j.rehab.2017.12.001

Rinaldi M, Ranavolo A, Conforto S, Martino G, et al. Increased lower limb muscle coactivation reduces gait performance and increases metabolic cost in patients with hereditary spastic paraparesis. Clin Biomech [Internet]. 2017;48:63–72. Available from: https://doi.org/10.1016/j.clinbiomech.2017.07.013

Zhang Y, Roxburgh R, Huang L, Parsons J, et al. The effect of hydrotherapy treatment on gait characteristics of hereditary spastic paraparesis patients. Gait Posture [Internet]. 2014;39(4):1074–1079. Available from: https://doi.org/10.1016/j.gaitpost.2014.01.010

McDermott A, Bolger C, Keating L, McEvoy L, et al. Reliability of three-dimensional gait analysis in cervical spondylotic myelopathy. Gait Posture [Internet]. 2010;32(4):552–558. Available from: https://doi.org/10.1016/j.gaitpost.2010.07.019

Piccinini L, Cimolin V, D’Angelo MG, Crivellini M, et al. 3D gait analysis in patients with hereditary spastic paraparesis and spastic diplegia: A kinematic, kinetic and EMG comparison. Eur J Paediatr Neurol [Internet]. 2011;15(2):138–145. Available from: https://doi.org/10.1016/j.ejpn.2010.07.009

Ryu T, Choi HS, Choi H, Chung MK. A comparison of gait characteristics between Korean and Western people for establishing Korean gait reference data. Int J Ind Ergon [Internet]. 2006;36(12):1023–1030. Available from: https://doi.org/10.1016/j.ergon.2006.09.013

Jung Young C, Heri B, Ngimwhichi J, Stephanie S, et al. Effects of wearing shoes on the feet: Radiographic comparison of middle-aged partially shod Maasai women’s feet and regularly shod Maasai and Korean women’s feet. J Foot Ankle Surg [Internet]. 2018;24(4):330–335. Available from: https://doi.org/10.1016/j.fas.2017.03.012

Dalgas U, Langeskov-Christensen M, Skjerbæk A, Jensen E, et al. Is the impact of fatigue related to walking capacity and perceived ability in persons with multiple sclerosis? A multicenter study. J Neurol Sci [Internet]. 2018;387:179–186. Available from: https://doi.org/10.1016/j.jns.2018.02.026

Bethoux F, Varsanik JS, Chevalier TW, Halpern EF, et al. Walking speed measurement with an Ambient Measurement System (AMS) in patients with multiple sclerosis and walking impairment. Gait Posture [Internet]. 2018;61:393–397. Available from: https://doi.org/10.1016/j.gaitpost.2018.01.033

Kalron A, Aloni R. Contrasting relationship between depression, quantitative gait characteristics and self-report walking difficulties in people with multiple sclerosis. Mult Scler Relat Disord [Internet]. 2018;19:1–5. Available from: https://doi.org/10.1016/j.msard.2017.10.012

van den Berg MEL, Barr CJ, McLoughlin JV, Crotty M. Effect of walking on sand on gait kinematics in individuals with multiple sclerosis. Mult Scler Relat Disord [Internet]. 2017;16:15–21. Available from: https://doi.org/10.1016/j.msard.2017.05.008

Kalron A, Menascu S, Dolev M, Givon U. The walking speed reserve in low disabled people with multiple sclerosis: Does it provide greater insight in detecting mobility deficits and risk of falling than preferred and fast walking speeds? Mult Scler Relat Disord [Internet]. 2017;17:202–206. Available from: https://doi.org/10.1016/j.msard.2017.08.010

Pau M, Corona F, Pilloni G, Porta M, et al. Texting while walking differently alters gait patterns in people with multiple sclerosis and healthy individuals. Mult Scler Relat Disord [Internet]. 2018;19:129–133. Available from: https://doi.org/10.1016/j.msard.2017.11.021

Della Sala S, Spinnler H, Venneri A. Walking difficulties in patients with Alzheimer’s disease might originate from gait apraxia. J Neurol Neurosurg Psychiatry [Internet]. 2004;75(2):196–201. Available from: https://www.ncbi.nlm.nih.gov/pubmed/14742586

Vieira Pereira F, Ferreira de Oliveira F, Rizek Schultz R, Ferreira Bertolucci PH. Balance impairment does not necessarily coexist with gait apraxia in mild and moderate Alzheimer’s disease. Arq Neuro-Psiquiatr [Internet]. 2016;74(6):450–455. Available from: https://doi.org/10.1590/0004-282x20160063

Dale ML, Curtze C, Nutt JG. Apraxia of gait- or apraxia of postural transitions? Parkinsonism Relat Disord [Internet]. 2018;50:19–22. Available from: https://doi.org/10.1016/j.parkreldis.2018.02.024

Hong Jin J, Maeng Je C, Seong-Jin C, Seon-Uk K, et al. Quantitative analysis of ataxic gait in patients with schizophrenia: The influence of age and visual control. Psychiatry Res [Internet]. 2007;152(2-3):155–164. Available from: https://doi.org/10.1016/j.psychres.2006.09.001

Wen-Juh H. Reversible pseudoathetosis and sensory ataxic gait caused by cervical spondylotic myelopathy. J Clin Neurosci [Internet]. 2016;34:271–272. Available from: https://doi.org/10.1016/j.jocn.2016.08.004

Siasios ID, Spanos SL, Kanellopoulos AK, Fotiadou A, et al. The Role of Gait Analysis in the Evaluation of Patients with Cervical Myelopathy: A Literature Review Study. World Neurosurg [Internet]. 2017;101:275–282. Available from: https://doi.org/10.1016/j.wneu.2017.01.122

Mihara M, Miyai I, Hatakenaka M, Kubota K, et al. Sustained prefrontal activation during ataxic gait: A compensatory mechanism for ataxic stroke? Neuroimage [Internet]. 2007;37(4):1338–1345. Available from: https://doi.org/10.1016/j.neuroimage.2007.06.014

Schmitz-Hübsch T, Brandt AU, Pfueller C, Zange L, et al. Accuracy and repeatability of two methods of gait analysis – GaitRiteTM und Mobility LabTM – in subjects with cerebellar ataxia. Gait Posture [Internet]. 2016;48:194–201. Available from: https://doi.org/10.1016/j.gaitpost.2016.05.014

Buckley E, Mazzà C, McNeill A. A systematic review of the gait characteristics associated with Cerebellar Ataxia. Gait Posture [Internet]. 2018;60:154–163. Available from: https://doi.org/10.1016/j.gaitpost.2017.11.024

Caliandro P, Iacovelli C, Conte C, Simbolotti C, et al. Trunk-lower limb coordination pattern during gait in patients with ataxia. Gait Posture [Internet]. 2017;57:252–257. Available from: https://doi.org/10.1016/j.gaitpost.2017.06.267

Pearson-Dennett V, Todd G, Wilcox RA, Vogel AP, et al. History of cannabis use is associated with altered gait. Drug Alcohol Depend [Internet]. 2017;178:215–222. Available from: https://doi.org/10.1016/j.drugalcdep.2017.05.017

Lambert CS, Philpot RM, Engberg ME, Johns BE, et al. Gait analysis and the cumulative gait index (CGI): Translational tools to assess impairments exhibited by rats with olivocerebellar ataxia. Behav Brain Res [Internet]. 2014;274:334–343. Available from: https://doi.org/10.1016/j.bbr.2014.08.004

Schniepp R, Wuehr M, Schlick C, Huth S, et al. Increased gait variability is associated with the history of falls in patients with cerebellar ataxia. J Neurol [Internet]. 2014;261:213–223. Available from: https://doi.org/10.1007/s00415-013-7189-3

Wuehr M, Nusser E, Krafczyk S, Straube A, et al. Noise-Enhanced Vestibular Input Improves Dynamic Walking Stability in Healthy Subjects. Brain Stimul [Internet]. 2016;9(1):109–116. Available from: https://doi.org/10.1016/j.brs.2015.08.017

Iwasaki S, Fujimoto C, Egami N, Kinoshita M, et al. Noisy vestibular stimulation increases gait speed in normal and in bilateral vestibulopathy. Brain Stimul [Internet]. 2018;11(4):709–715. Available from: https://doi.org/10.1016/j.brs.2018.03.005

Yin M, Ishikawa K, Omi E, Saito T, et al. Small vestibular schwannomas can cause gait instability. Gait Posture [Internet]. 2011;34(1):25–28. Available from: https://doi.org/10.1016/j.gaitpost.2011.02.026

Lang J, Ishikawa K, Hatakeyama K, Wong WH, et al. 3D body segment oscillation and gait analysis for vestibular disorders. Auris Nasus Larynx [Internet]. 2013;40(1):18–24. Available from: https://doi.org/10.1016/j.anl.2011.11.007

Henriksson M, Henriksson J, Bergenius J. Gait initiation characteristics in elderly patients with unilateral vestibular Impairment. Gait Posture [Internet]. 2011;33(4):661–667. Available from: https://doi.org/10.1016/j.gaitpost.2011.02.018

Angunsri N, Ishikawa K, Yin M, Omi E, et al. Gait instability caused by vestibular disorders —Analysis by tactile sensor. Auris Nasus Larynx [Internet]. 2011;38(4):462–468. Available from: https://doi.org/10.1016/j.anl.2011.01.016

de Souza Melo R. Gait performance of children and adolescents with sensorineural hearing loss. Gait Posture [Internet]. 2017;57:109–114. Available from: https://doi.org/10.1016/j.gaitpost.2017.05.031

Hösl M, Böhm H, Eck J, Döderlein L. Positive effects of backward downhill treadmill training on spastic equinus gait. Gait Posture [Internet]. 2015; 42S: S85–S86. Available from: https://doi.org/10.1016/j.gaitpost.2015.06.156

Houx L, Lempereur M, Rémy-Néris O, Brochard S. Threshold of equinus which alters biomechanical gait parameters in children. Gait Posture [Internet]. 2013;38(4):582–589. Available from: https://doi.org/10.1016/j.gaitpost.2013.01.026

Gatt A, De Giorgio S, Chockalingam N, Formosa C. A pilot investigation into the relationship between static diagnosis of ankle equinus and dynamic ankle and foot dorsiflexion during stance phase of gait: Time to revisit theory? The Foot [Internet]. 2017;30:47–52. Available from: https://doi.org/10.1016/j.foot.2017.01.002

Houx L, Lempereur M, Rémy-Néris O, Gross R, et al. Changes in muscle activity in typically developing children walking with unilaterally induced equinus. Clin Biomech [Internet]. 2014;29(10):1116–1124. Available from: https://doi.org/10.1016/j.clinbiomech.2014.09.015

Higginson JS, Zajac FE, Neptune RR, Kautz SA, et al. Effect of equinus foot placement and intrinsic muscle response on knee extension during stance. Gait Posture [Internet]. 2006;23(1):32–36. Available from: https://doi.org/10.1016/j.gaitpost.2004.11.011

Kläusler M, Speth BM, Brunner R, Tirosh O, et al. Long-term follow-up after tibialis anterior tendon shortening in combination with Achilles tendon lengthening in spastic equinus in cerebral palsy. Gait Posture [Internet]. 2017;58:457–462. Available from: https://doi.org/10.1016/j.gaitpost.2017.08.028

Allet L, Armand S, Aminian K, Pataky Z, et al. An exercise intervention to improve diabetic patients’ gait in a real-life Environment. Gait Posture [Internet]. 2010;32(2):185–190. Available from: https://doi.org/10.1016/j.gaitpost.2010.04.013

Camargo MR, Barela JA, Nozabieli AJL, Mantovani AM, et al. Balance and ankle muscle strength predict spatiotemporal gait parameters in individuals with diabetic peripheral neuropathy. Diabetes Metab Syndr [Internet]. 2015;9(2):79–84. Available from: https://doi.org/10.1016/j.dsx.2015.02.004

Fernando M, Crowther R, Lazzarini P, Sangla K, et al. Biomechanical characteristics of peripheral diabetic neuropathy: A systematic review and meta-analysis of findings from the gait cycle, muscle activity and dynamic barefoot plantar pressure. Clin Biomech [Internet]. 2013;28(8):831–845. Available from: https://doi.org/10.1016/j.clinbiomech.2013.08.004

Sawacha Z, Gabriella G, Cristoferi G, Guiotto A, et al. Diabetic gait and posture abnormalities: A biomechanical investigation through three dimensional gait analysis. Clin Biomech [Internet]. 2009;24(9):722–728. Available from: https://doi.org/10.1016/j.clinbiomech.2009.07.007

Khalaf K, Al-Angari HM, Khandoker AH, Lee S, et al. Gait alterations in the UAE population with and without diabetic complications using both traditional and entropy measures. Gait Posture [Internet]. 2017;58:72–77. Available from: https://doi.org/10.1016/j.gaitpost.2017.07.109

Allet L, Armand S, de Bie RA, Golay A, et al. Reliability of diabetic patients’ gait parameters in a challenging environment. Gait Posture [Internet]. 2008;28(4):680–686. Available from: https://doi.org/10.1016/j.gaitpost.2008.05.006

Jin-Hyuck P. The effects of plantar perception training on balance and falls efficacy of the elderly with a history of falls: A single-blind, randomized controlled trial. Arch Gerontol Geriatr [Internet]. 2018;77:19–23. Available from: https://doi.org/10.1016/j.archger.2018.03.014

Herman T, Giladi N, Gurevich T, Hausdorff JM. Gait instability and fractal dynamics of older adults with a “cautious” gait: why do certain older adults walk fearfully? Gait Posture [Internet]. 2005;21(2):178–185. Available from: https://doi.org/10.1016/j.gaitpost.2004.01.014

Tsai Y-J, Lin S-I. Older adults adopted more cautious gait patterns when walking in socks than barefoot. Gait Posture [Internet]. 2013;37(1):88–92. Available from: https://doi.org/10.1016/j.gaitpost.2012.06.034

Liang C-K, Chou M-Y, Peng L-N, Liao M-C, et al. Gait speed and risk assessment for falls among men aged 80 years and older: A prospective cohort study in Taiwan. Eur Geriatr Med [Internet]. 2014;5(5):298–302. Available from: https://doi.org/10.1016/j.eurger.2014.06.034

Balasubramanian CK, Clark DJ, Gouelle A. Validity of the Gait Variability Index in older adults: Effect of aging and mobility impairments. Gait Posture [Internet]. 2015;41(4):941–946. Available from: https://doi.org/10.1016/j.gaitpost.2015.03.349

Spaulding SJ, Patla AE, Flanagan J, Elliott DB, et al. Waterloo Vision and Mobility Study: Normal gait characteristics during dark and light adaptation in individuals with age-related maculopathy. Gait Posture [Internet]. 1995;3(4):227–235. Available from: https://doi.org/10.1016/0966-6362(96)82852-9

Fan Y, Li Z, Han S, Lv C, et al. The influence of gait speed on the stability of walking among the elderly. Gait Posture [Internet]. 2016;47:31–36. Available from: https://doi.org/10.1016/j.gaitpost.2016.02.018

Cruz-Jimenez M. Normal Changes in Gait and Mobility Problems in the Elderly. Phys Med Rehabil Clin N Am [Internet]. 2017;28(4):713–725. Available from: https://doi.org/10.1016/j.pmr.2017.06.005

Auvinet B, Touzard C, GoëbV. Gait instability out-patients consultation in the elderly: Interests of simple and dual task gait analysis. Ann Phys Rehabil Med [Internet]. 2015;58:e155. Available from: https://doi.org/10.1016/j.rehab.2015.07.368

Hirose D, Ishida K, Nagano Y, Takashi T, et al. Posture of the trunk in the sagittal plane is associated with gait in community-dwelling elderly population. Clin Biomechs [Internet]. 2004;19(1):57–63. Available from: https://doi.org/10.1016/j.clinbiomech.2003.08.005

Leigh RJ, Osis ST, Ferber R. Kinematic gait patterns and their relationship to pain in mild-to-moderate hip osteoarthritis. Clin Biomechs [Internet]. 2016;34:12–17. Available from: https://doi.org/10.1016/j.clinbiomech.2015.12.010

Smith JA, Gordon J, Kulig K. The influence of divided attention on walking turns: Effects on gait control in young adults with and without a history of low back pain. Gait Posture [Internet]. 2017;58:498–503. Available from: https://doi.org/10.1016/j.gaitpost.2017.09.019

O'Connell M, Farrokhi S, Fitzgerald GK. The role of knee joint moments and knee impairments on self-reported knee pain during gait in patients with knee osteoarthritis. Clin Biomechs [Internet]. 2016;31:40-46. Available from: https://doi.org/10.1016/j.clinbiomech.2015.10.003

Sawa R, Doi T, Misu S, Saito T, et al. The severity and number of musculoskeletal pain associated with gait in community-dwelling elderly individuals. Gait Posture [Internet]. 2017;54:242–247. Available from: https://doi.org/10.1016/j.gaitpost.2017.03.013

Chen G, Nie Y, Xie J, Cao G, et al. Gait Analysis of Leg Length Discrepancy—Differentiated Hip Replacement Patients With Developmental Dysplasia: A Midterm Follow-Up. J Arthroplast [Internet]. 2018;33(5):1437–1441. Available from: https://doi.org/10.1016/j.arth.2017.12.013

Beresford MW, Cleary AG. Evaluation of a limping child. Curr Paediatr [Internet]. 2005;15(1):15-22. Available from: https://doi.org/10.1016/j.cupe.2004.10.004

Khamis S, Carmeli E. Relationship and significance of gait deviations associated with limb length discrepancy: A systematic review. Gait Posture [Internet]. 2017;57:115–123. Available from: https://doi.org/10.1016/j.gaitpost.2017.05.028

Khamis S, Carmeli E. The effect of simulated leg length discrepancy on lower limb biomechanics during gait. Gait Posture [Internet]. 2018;61:73–80. Available from: https://doi.org/10.1016/j.gaitpost.2017.12.024

Chopra S, Crevoisier X. Preoperative gait asymmetry in end-stage unilateral ankle osteoarthrosis patients. Foot Ankle Surg [Internet]. 2019;25(3):298–302. Available from: https://doi.org/10.1016/j.fas.2017.12.004

Vasudevan PN, Vaidyalingam KV, Nair PB. Can trendelenburg’s sign be positive if the hip is normal? J Bone Joint Surg [Br] [Internet]. 1997;79-B(3):462–466. Available from: https://doi.org/10.1302/0301-620X.79B3.0790462

Physiopedia USA, Trendelenburg Gait [Internet]. 2021; Available from: https://www.physio-pedia.com/Trendelenburg_Gait

Pai VS. Significance of the Trendelenburg test in total hip arthroplasty influence of lateral approaches. J Arthroplast [Internet]. 1996;11(2):174–179. Available from: https://doi.org/10.1016/S0883-5403(05)80013-0

Petrofsky JS. The use of electromyogram biofeedback to reduce Trendelenburg gait. Eur J Appl Physiol [Internet].2001;85(5):491–495. Available from: https://doi.org/10.1007/s004210100466

Gilliss AC, Swanson RL, Janora D, Venkataraman V. Use of Osteopathic Manipulative Treatment to Manage Compensated Trendelenburg Gait Caused by Sacroiliac Somatic Dysfunction. JOM[Internet]. 2010;110(3):81–86. Available from: https://doi.org/10.7556/jaoa.2010.110.2.81

Koutakis P, Johanning JM, Haynatzki G, Myers SA, et al. Abnormal joint powers before and after the onset of claudication symptoms. J Vasc Surg [Internet]. 2010;52(2):340–347. Available from: https://doi.org/10.1016/j.jvs.2010.03.005

Zijlstra W. Assessment of spatio-temporal parameters during unconstrained walking. Eur J Appl Physiol [Internet]. 2004;92:39–44. Available from: https://doi.org/10.1007/s00421-004-1041-5

Öberg T, Karsznia A, Öberg K. Basic gait parameters: Reference data for normal subjects, 10-79 years of age. J Rehabil Res Dev [Internet]. 1993;30(2):210–223. Available from: https://www.rehab.research.va.gov/jour/93/30/2/pdf/oberg.pdf

Chung M-J, Wang M-J J. The change of gait parameters during walking at different percentage of preferred walking speed for healthy adults aged 20–60 years. Gait Posture [Internet]. 2010;31(1):131–135. Available from: https://doi.org/10.1016/j.gaitpost.2009.09.013

Stolze H, Kuhtz-Buschbeck JP, Mondwurf C, Jöhnk K, et al. Retest reliability of spatiotemporal gait parameters in children and adults. Gait Posture [Internet]. 1998;7(2):125–130. Available from: https://doi.org/10.1016/S0966-6362(97)00043-X

Kirtley C. Clinical Gait Analysis: Theory and Practice. China: Elsevier, Churchill Livingstone; 2006. 316p.

Erhart-Hledik JC, Favre J, Andriacchi TP. New insight in the relationship between regional patterns of knee cartilage thickness, osteoarthritis disease severity, and gait mechanics. J Biomech [Internet]. 2015;48(14):3868–3875. Available from: https://doi.org/10.1016/j.jbiomech.2015.09.033

Downloads

Published

2021-11-21

How to Cite

Arellano-González, J. C., Medellín-Castillo, H. I. ., Cervantes-Sánchez, J. J., & Vidal-Lesso, A. . (2021). A Practical Review of the Biomechanical Parameters Commonly Used in the Assessment of Human Gait. Revista Mexicana De Ingenieria Biomedica, 42(3), 6–27. https://doi.org/10.17488/RMIB.42.3.1

Dimensions Citation

Most read articles by the same author(s)