Desarrollo de Películas, Basadas en Almidón Oxidado de Ipomea Batatas,con Encapsulación de Proteínas
DOI:
https://doi.org/10.17488/RMIB.42.2.10Palabras clave:
Andamios, Oxidación, Almidón, Biomaterial, Aplicaciones biomédicasResumen
Los almidones oxidados o dialdehídos (DAS) se han utilizado como biomateriales debido a su biocompatibilidad y biodegradabilidad; sin embargo, el almidón de camote (Ipomea batatas L.) no ha sido investigado en este campo. Se han desarrollado películas basadas en DAS de camote, mezclado con almidón nativo (NS), alcohol polivinílico (PVA) y glicerina para encapsular una proteína modelo (albúmina de suero bovino, BSA), utilizando un diseño compuesto central (CCD) y metodología de superficie (RSM). Las variables de entrada fueron el grado de oxidación, la concentración de NS y el volumen de la mezcla polimérica, mientras que las variables de salida fueron el espesor de la película, el hinchamiento de equilibrio y la liberación de BSA. El DAS se obtuvo mediante oxidación con peróxido de hidrógeno (H2O2), y el grado de oxidación se expresa como la concentración de H2O2. Microscopía electrónica de barrido reveló una superficie rugosa y las formulaciones que contenían 10% H2O2 DAS presentaron microporos. La absorción de agua fue mayor con DAS que con almidón nativo, debido a sus grupos hidroxilo mostrados en los espectros infrarrojos con transformada de Fourier. El espesor de la película dependió del volumen de la suspensión polimérica e influyó en la capacidad de hinchamiento; las películas más gruesas absorbieron menos agua. Según RSM, la formulación óptima fue DAS con 5% H2O2 y 35% NS. El almidón de camote oxidado tiene potencial para aplicaciones de biomateriales, puesto que las películas desarrolladas con él pueden encapsular una proteína y liberarla de forma controlada.
Descargas
Citas
Chaulagain B, Jain A, Tiwari A, Verma A, et al. Passive delivery of protein drugs through transdermal route. Artif Cells Nanomed Biotechnol [Internet]. 2018;46(sup1):472–87. Available from: https://doi.org/10.1080/21691401.2018.1430695
López Angulo DE, do Amaral Sobral PJ. Characterization of gelatin/chitosan scaffold blended with aloe vera and snail mucus for biomedical purpose. Int J Biol Macromol [Internet]. 2016;92:645–53. Available from: https://doi.org/10.1016/j.ijbiomac.2016.07.029
Sharma P, Kumar P, Sharma R, Bhatt VD, et al. Tissue Engineering; Current Status & Futuristic Scope. J Med Life [Internet]. 2019;12(3):225–9. Available from: https://doi.org/10.25122/jml-2019-0032
Augustine R, Hasan A, Dalvi YB, Rehman U, et al. Growth factor loaded in situ photocrosslinkable poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/gelatin methacryloyl hybrid patch for diabetic wound healing. Mater Sci Eng C [Internet]. 2021;118:111519. Available from: https://doi.org/10.1016/j.msec.2020.111519
Wu D, Bäckström E, Hakkarainen M. Starch Derived Nanosized Graphene Oxide Functionalized Bioactive Porous Starch Scaffolds. Macromol Biosci [Internet]. 2017;17(6):1600397. Available from: https://doi.org/10.1002/mabi.201600397
Unnithan AR, Pichiah T, Gnanasekaran G, Seenivasan K, et al. Emu oil-based electrospun nanofibrous scaffolds for wound skin tissue engineering. Colloid Surf A-Physicochem Eng Asp [Internet]. 2012;415:454–60. Available from: https://doi.org/10.1016/j.colsurfa.2012.09.029
Panawes S, Ekabutr P, Niamlang P, Pavasant P, et al. Antimicrobial mangosteen extract infused alginate-coated gauze wound dressing. J Drug Deliv Sci Technol [Internet]. 2017;41:182–90. Available from: https://doi.org/10.1016/j.jddst.2017.06.021
Croisier F, Jérôme C. Chitosan-based biomaterials for tissue engineering. Eur Polym J [Internet]. 2013;49(4):780–92. Available from: https://doi.org/10.1016/j.eurpolymj.2012.12.009
Wang J, Sun B, Tian L, He X, et al. Evaluation of the potential of rhTGF- β3 encapsulated P(LLA-CL)/collagen nanofibers for tracheal cartilage regeneration using mesenchymal stems cells derived from Wharton’s jelly of human umbilical cord. Mater Sci Eng C [Internet]. 2017;70(1):637–45. Available from: https://doi.org/10.1016/j.msec.2016.09.044
Devi N, Sarmah M, Khatun B, Maji TK. Encapsulation of active ingredients in polysaccharide–protein complex coacervates. Adv Colloid Interface Sci [Internet]. 2017;239:136–45. Available from: https://doi.org/10.1016/j.cis.2016.05.009
Shariatinia Z. Pharmaceutical applications of chitosan. Adv Colloid Interface Sci [Internet]. 2019;263:131–94. Available from: https://doi.org/10.1016/j.cis.2018.11.008
Dhamecha D, Movsas R, Sano U, Menon JU. Applications of alginate microspheres in therapeutics delivery and cell culture: Past, present and future. Int J Pharm [Internet]. 2019;569:118627. Available from: https://doi.org/10.1016/j.ijpharm.2019.118627
Ramanathan G, Singaravelu S, Muthukumar T, Thyagarajan S, et al. Design and characterization of 3D hybrid collagen matrixes as a dermal substitute in skin tissue engineering. Mater Sci Eng C [Internet]. 2017;72:359–70. Available from: https://doi.org/10.1016/j.msec.2016.11.095
Van Nieuwenhove I, Salamon A, Peters K, Graulus G-J, et al. Gelatin- and starch-based hydrogels. Part A: Hydrogel development, characterization and coating. Carbohydr Polym [Internet]. 2016;152:129–39. Available from: https://doi.org/10.1016/j.carbpol.2016.06.098
Capanema NSV, Mansur AAP, de Jesus AC, Carvalho SM, et al. Superabsorbent crosslinked carboxymethyl cellulose-PEG hydrogels for potential wound dressing applications. Int J Biol Macromol [Internet]. 2018;106:1218–34. Available from: https://doi.org/10.1016/j.ijbiomac.2017.08.124
Yadav I, Rathnam VSS, Yogalakshmi Y, Chakraborty S, et al. Synthesis and characterization of polyvinyl alcohol- carboxymethyl tamarind gum based composite films. Carbohydr Polym [Internet]. 2017;165:159–68. Available from: https://doi.org/10.1016/j.carbpol.2017.02.026
Li Y, Tan Y, Xu K, Lu C, et al. A biodegradable starch hydrogel synthesized via thiol-ene click chemistry. Polym Degrad Stab [Internet]. 2017;137:75–82. Available from: https://doi.org/10.1016/j.polymdegradstab.2016.07.015
Nasri-Nasrabadi B, Mehrasa M, Rafienia M, Bonakdar S, Behzad T, et al. Porous starch/cellulose nanofibers composite prepared by salt leaching technique for tissue engineering. Carbohydr Polym [Internet]. 2014;108:232–8. Available from: https://doi.org/10.1016/j.carbpol.2014.02.075
Waghmare VS, Wadke PR, Dyawanapelly S, Deshpande A, et al. Starch based nanofibrous scaffolds for wound healing applications. Bioact Mater [Internet]. 2018;3(3):255-266. Available from: https://doi.org/10.1016/j.bioactmat.2017.11.006
Kalia S, Avérous L. Biodegradable and Biobased Polymers for Environmental and Biomedical Applications. Beverly, MA: Wiley; 2016. 501p.
Zuo Y, Liu W, Xiao J, Zhao X, et al. Preparation and characterization of dialdehyde starch by one-step acid hydrolysis and oxidation. Int J Biol Macromol [Internet]. 2017;103:1257–64. Available from: https://doi.org/10.1016/j.ijbiomac.2017.05.188
Zhang Y-R, Wang X-L, Zhao G-M, Wang Y-Z. Preparation and properties of oxidized starch with high degree of oxidation. Carbohydr Polym [Internet]. 2012;87:2554–62. Available from: https://doi.org/10.1016/j.carbpol.2011.11.036
Zhang S-D, Zhang Y-R, Wang X-L, Wang Y-Z. High Carbonyl Content Oxidized Starch Prepared by Hydrogen Peroxide and Its Thermoplastic Application. Staerke [Internet]. 2009;61:646–55. Available from: https://doi.org/10.1002/star.200900130
Wen N, Lü S, Xu X, Ning P, et al. A polysaccharide-based micelle-hydrogel synergistic therapy system for diabetes and vascular diabetes complications treatment. Mater Sci Eng C [Internet]. 2019;100:94–103. Available from: https://doi.org/10.1016/j.msec.2019.02.081
Nada AA, Soliman AAF, Aly AA, Abou-Okeil A. Stimuli-Free and Biocompatible Hydrogel via Hydrazone Chemistry: Synthesis, Characterization, and Bioassessment. Staerke [Internet]. 2018;71:1800243. Available from: https://doi.org/10.1002/star.201800243
El Sheikha AF, Ray RC. Potential impacts of bioprocessing of sweet potato: Review. Crit Rev Food Sci Nutr [Internet]. 2017;57(3):455–71. Available from: https://doi.org/10.1080/10408398.2014.960909
Smith RJ. Characterization and analysis of starches. In: Whistler RL, Paschall EF (eds.). Starch: Chemistry and Technology. New York: Academic Press; 1967:620–625p.
Parovuori P, Hamunen A, Forssell P, Autio K, et al. Oxidation of Potato Starch by Hydrogen Peroxide. Staerke [Internet]. 1995;47(1):19-23. Available from: https://doi.org/10.1002/star.19950470106
Ellens CJ. Design, optimization and evaluation of a free-fall biomass fast pyrolysis reactor and its products. [Master's thesis]. [Iowa]: Iowa State University, 2009: 155.
Nomani A, Nosrati H, Manjili HK, Khesalpour L, et al. Preparation and Characterization of Copolymeric Polymersomes for Protein Delivery. Drug Res [Internet]. 2017;67(8):458–65. Available from: https://doi.org/10.1055/s-0043-106051
Osundahunsi OF, Fagbemi TN, Kesselman E, Shimoni E. Comparison of the Physicochemical Properties and Pasting Characteristics of Flour and Starch from Red and White Sweet Potato Cultivars. J Agric Food Chem [Internet]. 2003;51(8):2232–6. Available from: https://doi.org/10.1021/jf0260139
Pérez S, Baldwin PM, Gallant DJ. Structural Featurs of Starch Granules I. In: BeMiller J, Whistler R (eds). Food Science and Technology [Internet]. Academic Press; 2009. 149-192p. Available from: https://doi.org/10.1016/B978-0-12-746275-2.00005-7
Salmi T, Tolvanen P, Wärnå J, Mäki-Arvela P, et al. Mathematical modeling of starch oxidation by hydrogen peroxide in the presence of an iron catalyst complex. Chem Eng Sci [Internet]. 2016;146:19–25. Available from: https://doi.org/10.1016/j.ces.2016.02.027
Lyu Y, Ren H, Yu M, Li X, et al. Using oxidized amylose as carrier of linalool for the development of antibacterial wound dressing. Carbohydr Polym [Internet]. 2017;174:1095–105. Available from: https://doi.org/10.1016/j.carbpol.2017.07.033
Silva R, Singh R, Sarker B, Papageorgiou DG, et al. Hydrogel matrices based on elastin and alginate for tissue engineering applications. Int J Biol Macromol [Internet]. 2018;114:614–25. Available from: https://doi.org/10.1016/j.ijbiomac.2018.03.091
Nourmohammadi J, Ghaee A, Liavali SH. Preparation and characterization of bioactive composite scaffolds from polycaprolactone nanofibers-chitosan-oxidized starch for bone regeneration. Carbohydr Polym [Internet]. 2016;138:172–9. Available from: https://doi.org/10.1016/j.carbpol.2015.11.055
Tang IM, Krishnamra N, Charoenphandhu N, Hoonsawat R, et al. Biomagnetic of Apatite-Coated Cobalt Ferrite: A Core–Shell Particle for Protein Adsorption and pH-Controlled Release. Nanoscale Res Lett [Internet]. 2011;6:19. Available from: https://doi.org/10.1007/s11671-010-9761-4
Li D, Ye Y, Li D, Li X, et al. Biological properties of dialdehyde carboxymethyl cellulose crosslinked gelatin–PEG composite hydrogel fibers for wound dressings. Carbohydr Polym [Internet]. 2016;137:508–14. Available from: https://doi.org/10.1016/j.carbpol.2015.11.024
Arockianathan PM, Sekar S, Kumaran B, Sastry TP. Preparation, characterization and evaluation of biocomposite films containing chitosan and sago starch impregnated with silver nanoparticles. Int J Biol Macromol [Internet]. 2012;50(4):939–46. Available from: https://doi.org/10.1016/j.ijbiomac.2012.02.022
Moreno O, Cárdenas J, Atarés L, Chiralt A. Influence of starch oxidation on the functionality of starch-gelatin based active films. Carbohydr Polym [Internet]. 2017;178:147–58. Available from: https://doi.org/10.1016/j.carbpol.2017.08.128
Liu Y, Ma L, Gao C. Facile fabrication of the glutaraldehyde cross-linked collagen / chitosan porous scaffold for skin tissue engineering. Mater Sci Eng C [Internet]. 2012;32(8):2361–6. Available from: https://doi.org/10.1016/j.msec.2012.07.008
Li T, Song X, Weng C, Wang X, et al. Self-crosslinking and injectable chondroitin sulfate/pullulan hydrogel for cartilage tissue engineering. Appl Mater Today [Internet]. 2018;10:173–83. Available from: https://doi.org/10.1016/j.apmt.2017.12.002
Zareidoost A, Yousefpour M, Ghaseme B, Amanzadeh A. The relationship of surface roughness and cell response of chemical surface modification of titanium. J Mater Sci Mater Med [Internet]. 2012;23:1479–88. Available from: https://doi.org/10.1007/s10856-012-4611-9
Hou Y, Xie W, Yu L, Cuellar Camacho L, et al. Surface Roughness Gradients Reveal Topography-Specific Mechanosensitive Responses in Human Mesenchymal Stem Cells. Small[Internet].2020;16(10):1905422. Available from: https://doi.org/10.1002/smll.201905422
Descargas
Publicado
Cómo citar
Número
Sección
Licencia
Derechos de autor 2021 Revista mexicana de ingeniería biomédica.
Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial 4.0.
Una vez que el artículo es aceptado para su publicación en la RMIB, se les solicitará al autor principal o de correspondencia que revisen y firman las cartas de cesión de derechos correspondientes para llevar a cabo la autorización para la publicación del artículo. En dicho documento se autoriza a la RMIB a publicar, en cualquier medio sin limitaciones y sin ningún costo. Los autores pueden reutilizar partes del artículo en otros documentos y reproducir parte o la totalidad para su uso personal siempre que se haga referencia bibliográfica al RMIB. No obstante, todo tipo de publicación fuera de las publicaciones académicas del autor correspondiente o para otro tipo de trabajos derivados y publicados necesitaran de un permiso escrito de la RMIB.