Scientific and Technical overview about Artificial Proprioception in Prosthetics
DOI:
https://doi.org/10.17488/RMIB.46.1.1465Keywords:
artificial proprioception, biomechatronic devices, prosthetics, rehabilitation technology, sensory feedbackAbstract
Proprioception is the body's ability to perceive its position and movement, which plays a crucial role in motor control, and its loss following amputation presents significant challenges for prosthesis users. Artificial Proprioception is an innovation that enhances sensory feedback and motor control in prosthetic devices. This review presents a comprehensive overview of current research and technological developments in Artificial Proprioception, focusing on sensory feedback mechanisms, neural interface systems, and the integration of biomechatronic technologies. With a growing interest in restoring sensory feedback for amputees, this work explores key innovations such as electrotactile and vibrotactile stimulation, artificial intelligence, and neural interfaces that enable a more natural and intuitive prosthetic control. The methodology included reviewing studies from databases like Scopus, Web of Science, and PubMed on proprioceptive feedback in prosthetics in recent years. It evaluates research related to sensory feedback, amputation levels, neural interfaces, and technological advancements, classifying papers by feedback mechanisms. The paper concludes by discussing potential future developments, including more advanced, user-centered prosthetic devices that address the sensory needs of amputees and improve their quality of life.
Downloads
References
R. A. Magill and D. I. Anderson, “Sensory components of motor control,” in Motor Learning and Control: Concepts and Applications, 12th ed, New York, NY: McGraw Hill, 2021. [Online]. Available: https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=3082§ionid=256573379.
V. E. Abraira and D. D. Ginty, “The sensory neurons of touch,” Neuron, vol. 79, no. 4, pp. 618–639, 2013, doi: https://doi.org/10.1016/J.NEURON.2013.07.051
R. A. Magill and D. I. Anderson, “Augmented feedback,” in Motor Learning and Control: Concepts and Applications, 12th ed., New York, NY: McGraw Hill, 2021. [Online]. Available: https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=3082§ionid=256574674
WHO standards for prosthetics and orthotics, World Health Organization and USAID, Geneva, 2017. [Online]. Available: https://www.who.int/publications/i/item/9789241512480
Federación Mexicana de Diabetes. “Estadísticas en México.” Federación Mexicana de Diabetes, A. C. Accessed: Jun. 30, 2024. [Online]. Available: https://fmdiabetes.org/estadisticas-en-mexico/
I. J. Ascencio-Montiel, “10 years analysis of diabetes-related major lower extremity amputations in México,” Arch. Med. Res., vol. 49, no. 1, pp. 58-64, 2018, doi: https://doi.org/10.1016/j.arcmed.2018.04.005
M. A. Chahrour et al., “Major lower extremity amputations in a developing country: 10-Year experience at a tertiary medical center,” Vascular, vol. 29, no. 4, pp. 574-581, 2021, doi: https://doi.org/10.1177/1708538120965081
R. R. Riso, “Strategies for providing upper extremity amputees with tactile and hand position feedback - Moving closer to the bionic arm,” Technol. Health Care, vol. 7, no. 6, pp. 401–409, 1999, doi: https://doi.org/10.3233/thc-1999-7604
S. Raspopovic, G. Valle, and F. M. Petrini, “Sensory feedback for limb prostheses in amputees,” Nat. Mater., vol. 20, no. 7, pp. 925–939, 2021, doi: https://doi.org/10.1038/s41563-021-00966-9
O. Diaz-Hernandez and I. Salinas-Sanchez, “Towards artificial proprioception in prosthetic devices,” Int. J. Med. Sci., vol. 10, no. 1, pp. 1–5, 2023, doi: https://doi.org/10.14445/23939117/ijms-v10i1p101
J. Dideriksen, E. Siebold, S. Dosen, and M. Markovic, “Investigating the benefits of multivariable proprioceptive feedback for upper-limb prostheses,” IEEE Trans. Med. Robot. Bionics, vol. 6, no. 2, pp. 757–768, 2024, doi: https://doi.org/10.1109/TMRB.2024.3385983
F. Masiero, E. La Frazia, V. Ianniciello, and C. Cipriani, “Generating frequency selective vibrations in remote moving magnets,” Adv. Intell. Syst., vol. 6, no. 6, 2024, art. no. 2300751, doi: https://doi.org/10.1002/aisy.202300751
Y. Han et al., “Substitutive proprioception feedback of a prosthetic wrist by electrotactile stimulation,” Front. Neurosci., vol. 17, 2023, art. no. 1135687, doi: https://doi.org/10.3389/FNINS.2023.1135687
M. Guémann et al., “Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees,” J. Neuroeng. Rehabil., vol. 19, 2022, art. no. 59, doi: https://doi.org/10.1186/S12984-022-01038-Y
P. D. Marasco et al., “Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors,” Sci. Robot., vol. 6, no. 58, 2021, art. no. eabf3368, doi: https://doi.org/10.1126/scirobotics.abf3368
S. Su et al., “Neural evidence for functional roles of tactile and visual feedback in the application of myoelectric prosthesis,” J. Neural Eng., vol. 20, no. 1, 2023, art. no. 016038, doi: https://doi.org/10.1088/1741-2552/ACAB32
N. Piliugin et al., “Unraveling Sensory Restoration: Decoding Complex Behavioral Data through Peripheral Nerve Stimulation Analysis,” in 12th Int. Winter Conf. Brain-Comput. Interface (BCI), Gangwon, Corea, 2024, pp. 1-4, doi: https://doi.org/10.1109/BCI60775.2024.10480475
E. Romero and D. A. Elias, “Design of a haptic palmar-finger feedback system for upper limb myoelectric prosthesis model PUCP-Hand,” in 2022 Int. Conf. Elect. Comput. Energy Technol. (ICECET), Prague, Czech Republic, 2022, pp. 1-6,2022, doi: https://doi.org/10.1109/ICECET55527.2022.9872575
M. Gallone and M. D. Naish, “Scalp-Targeted Haptic Proprioception for Upper-Limb Prosthetics,” in 2022 Int. Conf. Rehabil. Robot. (ICORR), Rotterdam, Netherlands, 2022, pp. 1-6, doi: https://doi.org/10.1109/ICORR55369.2022.9896551
E. Trujillo-Trujillo, K. Acuna-Condori, and M. G. S. P. Paredes, “Evaluation of the skin fixation method of a haptic device to provide proprioceptive information for a sensory feedback prosthesis,” in 2022 IEEE ANDESCON, Barranquilla, Colombia, 2022, pp. 1-6, doi: https://doi.org/10.1109/ANDESCON56260.2022.9989931
M. Magbagbeola, M. Miodownik, S. Hailes, and R. C. V. Loureiro, “Correlating vibration patterns to perception of tactile information for long-term prosthetic limb use and continued rehabilitation of neuropathic pain,” in 2022 Int. Conf. Rehab. Robot. (ICORR), Rotterdam, Netherlands, 2022, pp. 1-6, doi: https://doi.org/10.1109/ICORR55369.2022.9896412
H. Cha et al., “Study on intention recognition and sensory feedback: control of robotic prosthetic hand through emg classification and proprioceptive feedback using rule-based haptic device,” IEEE Trans. Haptics, vol. 15, no. 3, pp. 560–571, 2022, doi: https://doi.org/10.1109/TOH.2022.3177714
E. Battaglia et al., “The rice haptic rocker: skin stretch haptic feedback with the Pisa/IIT softhand,” in 2017 IEEE World Haptics Conference (WHC), Munich, Germany, 2017, pp. 7-12, doi: https://doi.org/10.1109/WHC.2017.7989848
M. Mulvey, H. Fawkner, and M. I. Johnson, “An investigation into the perceptual embodiment of an artificial hand using transcutaneous electrical nerve stimulation (TENS) in intact-limbed individuals,” Technol. Health Care, vol. 22, no. 2, pp. 157–166, 2014, doi: https://doi.org/10.3233/THC-140780
E. D. Papaleo et al., “Integration of proprioception in upper limb prostheses through non-invasive strategies: a review,” J. Neuroeng. Rehabil., vol. 20, no. 1, 2023, art. no. 118, doi: https://doi.org/10.1186/S12984-023-01242-4
O. Lecompte, S. Achiche, and A. Mohebbi, “A review of proprioceptive feedback strategies for upper-limb myoelectric prostheses,” IEEE Trans. Med. Robot. Bionics., vol. 6, no. 3, pp. 930–939, 2024, doi: https://doi.org/10.1109/TMRB.2024.3407532
B. A. Petersen, P. J. Sparto, and L. E. Fisher, “Clinical measures of balance and gait cannot differentiate somatosensory impairments in people with lower-limb amputation,” Gait Posture, vol. 99, pp. 104–110, 2023, doi: https://doi.org/10.1016/J.GAITPOST.2022.10.018
J. M. Canton Leal, J. V. Gyllinsky, A. A. Arredondo Zamudio, and K. Mankodiya, “HapticLink: a force-based haptic feedback system for single and double lower-limb amputees,” in 2022 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 4226-4229, doi: https://doi.org/10.1109/EMBC48229.2022.9871460
F. C. Gattinara Di Zubiena, L. D’Alvia, Z. Del Prete, and E. Palermo, “A static characterization of stretchable 3D-printed strain sensor for restoring proprioception in amputees,” in 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 2022, pp. 1-4, doi: https://doi.org/10.1109/FLEPS53764.2022.9781497
F. C. G. Di Zubiena et al., “FEM deformation analysis of a transtibial prosthesis fed with gait analysis data: A preliminary step towards restoring proprioception in amputees,” in 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 2021, pp. 493-498, doi: https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488482
A. Gardetto et al., “Reduction of phantom limb pain and improved proprioception through a TSR‐based surgical technique: a case series of four patients with lower limb amputation,” J. Clin. Med., vol. 10, no. 17, 2021, art. no. 4029, doi: https://doi.org/10.3390/JCM10174029
R. J. Foster et al., “Individuals with unilateral transtibial amputation exhibit reduced accuracy and precision during a targeted stepping task,” J. Biomech., vol. 105, 2020, art. no. 109785, doi: https://doi.org/10.1016/J.JBIOMECH.2020.109785
H. Charkhkar, B. P. Christie, and R. J. Triolo, “Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees,” Sci. Rep., vol. 10, no. 1, 2020, art. no. 6984, doi: https://doi.org/10.1038/s41598-020-63936-2
B. P. Christie et al., “Visuotactile synchrony of stimulation-induced sensation and natural somatosensation,” J. Neural. Eng., vol. 16, no. 3, 2019, art. no. 036025, doi: https://doi.org/10.1088/1741-2552/AB154C
R. A. Coker, E. R. Zellmer, and D. W. Moran, “Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: Stimulation,” J. Neural. Eng., vol. 16, no. 2, 2019, art. no. 026002, doi: https://doi.org/10.1088/1741-2552/aaefab
A. Plauche, D. Villarreal, and R. D. Gregg, “A haptic feedback system for phase-based sensory restoration in above-knee prosthetic leg users,” IEEE Trans. Haptics., vol. 9, no. 3, pp. 421–426, 2016, doi: https://doi.org/10.1109/TOH.2016.2580507
L. Yang et al., “Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait,” Gait Posture, vol. 36, no. 3, pp. 631–634, 2012, doi: https://doi.org/10.1016/J.GAITPOST.2012.04.004
A. Ghiami Rad and B. Shahbazi, “A systematic investigation of sensorimotor mechanisms with intelligent prostheses in patients with ankle amputation while walking,” J. Mech. Behav. Biomed. Mater., vol. 151, 2024, art. no. 106357, doi: https://doi.org/10.1016/j.jmbbm.2023.106357
C. Wall and E. Kentala, “Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits,” J. Vestib. Res., vol. 15, no. 5–6, pp. 313–325, 2005, doi: https://doi.org/10.3233/VES-2005-155-607
T. R. Farrell, R. F. Weir, C. W. Heckathorne, and D. S. Childress, “The effects of static friction and backlash on extended physiological proprioception control of a powered prosthesis,” J. Rehabil. Res. Dev., vol. 42, no. 3, pp. 327–341, 2005, doi: https://doi.org/10.1682/jrrd.2004.05.0052
K. J. Kuchenbecker, N. Gurari, and A. M. Okamura, “Effects of visual and proprioceptive motion feedback on human control of targeted movement,” in 2007 IEEE 10th Int. Conf. Rehab. Robot., Noordwijk, Netherlands, 2007, pp. 513-524, doi: https://doi.org/10.1109/ICORR.2007.4428474
N. Gurari, K. J. Kuchenbecker, and A. M. Okamura, “Stiffness discrimination with visual and proprioceptive cues,” in Proc. 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, 2009, pp. 121–126, doi: https://doi.org/10.1109/WHC.2009.4810845
A. Blank, A. M. Okamura, and K. J. Kuchenbecker, “Effects of proprioceptive motion feedback on sighted and non-sighted control of a virtual hand prosthesis,” in 2008 Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Reno, NV, USA, 2008, pp. 141–142, doi: https://doi.org/10.1109/HAPTICS.2008.4479933
S. Wendelken et al., “Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves,” J. Neuroeng. Rehab., vol. 14, no. 1, 2017, art. no. 121, doi: https://doi.org/10.1186/S12984-017-0320-4
B. Lima and F. L. Hammond, “Haptically-displayed proprioceptive feedback via simultaneous rotary skin stretch and vibrotactile stimulation,” in 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, 2023, pp. 241–247, doi: https://doi.org/10.1109/RO-MAN57019.2023.10309652
A. Mablekos-Alexiou, G. A. Bertos and E. Papadopoulos, “A biomechatronic Extended Physiological Proprioception (EPP) controller for upper-limb prostheses,” in 2015 IEEE/RSJ Int. Conf. Intel. Robots Syst. (IROS), Hamburg, Germany, 2015, pp. 6173-6178, doi: https://doi.org/10.1109/IROS.2015.7354257
D. J. Weber, R. Friesen, and L. E. Miller, “Interfacing the somatosensory system to restore touch and proprioception: essential considerations,” J. Mot. Behav., vol. 44, no. 6, pp. 403–418, 2012, doi: https://doi.org/10.1080/00222895.2012.735283
A. Ramos-Murguialday et al., “Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses,” PLoS One, vol. 7, no. 10, 2012, art. no. e47048, doi: https://doi.org/10.1371/JOURNAL.PONE.0047048
R. A. Gaunt, J. A. Hokanson, and D. J. Weber, “Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: Thresholds and recruitment properties,” J. Neural. Eng., vol. 6, no. 5, 2009, art. no. 055009, doi: https://doi.org/10.1088/1741-2560/6/5/055009
G. A. Tabot, S. S. Kim, J. E. Winberry, and S. J. Bensmaia, “Restoring tactile and proprioceptive sensation through a brain interface,” Neurobiol. Dis., vol. 83, pp. 191–198, 2015, doi: https://doi.org/10.1016/J.NBD.2014.08.029
S. S. Srinivasan et al., “Agonist-antagonist myoneural interfaces in above-knee amputation preserve distal joint function and perception,” Ann. Surg., vol. 273, no. 3, pp. E115–E118, 2021, doi: https://doi.org/10.1097/SLA.0000000000004153
T. A. Kuiken et al., “Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation,” Proc. Natl. Acad. Sci. USA, vol. 104, no. 50, pp. 20061–20066, 2007, doi: https://doi.org/10.1073/pnas.0706525104
G. Li and T. A. Kuiken, “Modeling of prosthetic limb rotation control by sensing rotation of residual arm bone,” IEEE Trans. Biomed. Eng., vol. 55, no. 9, pp. 2134–2142, 2008, doi: https://doi.org/10.1109/TBME.2008.923914
A. Akhtar, et al., “Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis,” in 9th International Conference, EuroHaptics 2014, Versailles, France, 2014, pp. 120–128, doi: https://doi.org/10.1007/978-3-662-44196-1_16
J. D. Brown et al., “An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback,” J. Neuroeng. Rehabil., vol. 12, no. 1, 2015, art. no. 104, doi: https://doi.org/10.1186/S12984-015-0098-1
M. A. Schiefer et al., “Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks,” PLoS One, vol. 13, no. 12, 2018, art. no. e0207659, doi: https://doi.org/10.1371/JOURNAL.PONE.0207659
E. J. Rouse, D. C. Nahlik, M. A. Peshkin, and T. A. Kuiken, “Development of a model osseo-magnetic link for intuitive rotational control of upper-limb prostheses,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 19, no. 2, pp. 213–220, 2011, doi: https://doi.org/10.1109/TNSRE.2010.2102365
I. Cuberovic et al., “Learning of artificial sensation through long-term home use of a sensory-enabled prosthesis,” Front. Neurosci., vol. 13, 2019, art. no. 853, doi: https://doi.org/10.3389/FNINS.2019.00853
P. D. Marasco et al., “Illusory movement perception improves motor control for prosthetic hands,” Sci. Transl. Med., vol. 10, no. 432, 2018, art. no. eaao6990, doi: https://doi.org/10.1126/SCITRANSLMED.AAO6990
K. H. Sienko et al., “Potential mechanisms of sensory augmentation systems on human balance control,” Front. Neurol., vol. 9, 2018, art. no. 944, doi: https://doi.org/10.3389/FNEUR.2018.00944
T. J. Bates, J. R. Fergason, and S. N. Pierrie, “Technological advances in prosthesis design and rehabilitation following upper extremity limb loss,” Curr. Rev. Musculoskelet. Med., vol. 13, no. 4, pp. 485–493, 2020, doi: https://doi.org/10.1007/s12178-020-09656-6
D. K. Luu et al., “Artificial intelligence enables real-time and intuitive control of prostheses via nerve interface,” IEEE Trans. Biomed. Eng., vol. 69, no. 10, pp. 3051–3063, 2022, doi: https://doi.org/10.1109/TBME.2022.3160618
L. Vargas, H. H. Huang, Y. Zhu, and X. Hu, “Closed-loop control of a prosthetic finger via evoked proprioceptive information,” J. Neural. Eng., vol. 18, no. 6, 2021, art. no. 066029, doi: https://doi.org/10.1088/1741-2552/ac3c9e
C. C. Berger, S. Coppi, and H. H. Ehrsson, “Synchronous motor imagery and visual feedback of finger movement elicit the moving rubber hand illusion, at least in illusion-susceptible individuals,” Exp. Brain. Res., vol. 241, pp. 1021–1039, 2023, doi: https://doi.org/10.1007/s00221-023-06586-w
S. Srinivasan et al., “On prosthetic control: a regenerative agonist-antagonist myoneural interface,” Sci. Robot., vol. 2, no. 6, 2017, art. no. eaan2971, doi: https://doi.org/10.1126/scirobotics.aan2971
S. S. Srinivasan, M. Diaz, M. Carty, and H. M. Herr, “Towards functional restoration for persons with limb amputation: A dual-stage implementation of regenerative agonist-antagonist myoneural interfaces,” Sci. Rep., vol. 9, 2019, art. no. 1981, doi: https://doi.org/10.1038/S41598-018-38096-Z
H. M. Herr et al., “Reinventing extremity amputation in the era of functional limb restoration,” Ann. Surg., vol. 273, no. 2, pp. 269–279, 2021, doi: https://doi.org/10.1097/SLA.0000000000003895
S. S. Srinivasan, S. Gutierrez-Arango, A. C. Teng and H. M. Herr, “Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation,” Proc. Natl. Acad. Sci. USA, vol. 118, no. 9, 2021, art. no. e2019555118, doi: https://doi.org/10.1073/PNAS.2019555118
M. A. Garenfeld et al., “Closed-loop control of a multifunctional myoelectric prosthesis with full-state anatomically congruent electrotactile feedback,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 31, pp. 2090–2100, 2023, doi: https://doi.org/10.1109/TNSRE.2023.3267273
M. A. Garenfeld et al., “Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom,” J. Neural Eng., vol. 17, no. 4, 2020, art. no. 046034, doi: https://doi.org/10.1088/1741-2552/aba4fd
E. Battaglia et al., “Skin stretch haptic feedback to convey closure information in anthropomorphic, under-actuated upper limb soft prostheses,” IEEE Trans. Haptics, vol. 12, no. 4, pp. 508–520, 2019, doi: https://doi.org/10.1109/TOH.2019.2915075
M. Rossi et al., “HapPro: a wearable haptic device for proprioceptive feedback,” IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 138–149, 2019, doi: https://doi.org/10.1109/TBME.2018.2836672

Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2025 Revista Mexicana de Ingenieria Biomedica

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Upon acceptance of an article in the RMIB, corresponding authors will be asked to fulfill and sign the copyright and the journal publishing agreement, which will allow the RMIB authorization to publish this document in any media without limitations and without any cost. Authors may reuse parts of the paper in other documents and reproduce part or all of it for their personal use as long as a bibliographic reference is made to the RMIB. However written permission of the Publisher is required for resale or distribution outside the corresponding author institution and for all other derivative works, including compilations and translations.