Panorama Científico y Técnico sobre Propiocepción Artificial en Prótesis

Autores/as

DOI:

https://doi.org/10.17488/RMIB.46.1.1465

Palabras clave:

dispositivos biomecatrónicos, propiocepción artificial, prótesis, retroalimentación sensorial, tecnología de rehabilitación

Resumen

La propiocepción es la capacidad del cuerpo para percibir su posición y movimiento, que desempeña un papel crucial en el control motor, y su pérdida tras una amputación plantea importantes retos a los usuarios de prótesis. La propiocepción artificial es un avance innovador para mejorar la respuesta sensorial y el control motor de las prótesis. Esta revisión presenta una visión global de la investigación actual y los avances tecnológicos en Propiocepción Artificial, centrándose en los mecanismos de retroalimentación sensorial, los sistemas de interfaz neural y la integración de la biomecatrónica. Con un interés creciente en la restauración de la retroalimentación sensorial para amputados, este trabajo explora innovaciones clave como la estimulación electrotáctil y vibrotáctil, la inteligencia artificial y las interfaces neurales que permiten un control protésico más natural e intuitivo. La metodología incluyó la revisión de estudios de bases de datos como Scopus, Web of Science y PubMed sobre retroalimentación propioceptiva en prótesis en los últimos años. Se evalúa la investigación relacionada con la retroalimentación sensorial, los niveles de amputación, las interfaces neurales y los avances tecnológicos, analizando los artículos por mecanismos de retroalimentación. El artículo concluye con un debate sobre posibles desarrollos futuros, incluidos dispositivos protésicos más avanzados y centrados en el usuario que aborden las necesidades sensoriales de los amputados y mejoren su calidad de vida.

Descargas

Los datos de descargas todavía no están disponibles.

Citas

R. A. Magill and D. I. Anderson, “Sensory components of motor control,” in Motor Learning and Control: Concepts and Applications, 12th ed, New York, NY: McGraw Hill, 2021. [Online]. Available: https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=3082&sectionid=256573379.

V. E. Abraira and D. D. Ginty, “The sensory neurons of touch,” Neuron, vol. 79, no. 4, pp. 618–639, 2013, doi: https://doi.org/10.1016/J.NEURON.2013.07.051

R. A. Magill and D. I. Anderson, “Augmented feedback,” in Motor Learning and Control: Concepts and Applications, 12th ed., New York, NY: McGraw Hill, 2021. [Online]. Available: https://accessphysiotherapy.mhmedical.com/content.aspx?bookid=3082&sectionid=256574674

WHO standards for prosthetics and orthotics, World Health Organization and USAID, Geneva, 2017. [Online]. Available: https://www.who.int/publications/i/item/9789241512480

Federación Mexicana de Diabetes. “Estadísticas en México.” Federación Mexicana de Diabetes, A. C. Accessed: Jun. 30, 2024. [Online]. Available: https://fmdiabetes.org/estadisticas-en-mexico/

I. J. Ascencio-Montiel, “10 years analysis of diabetes-related major lower extremity amputations in México,” Arch. Med. Res., vol. 49, no. 1, pp. 58-64, 2018, doi: https://doi.org/10.1016/j.arcmed.2018.04.005

M. A. Chahrour et al., “Major lower extremity amputations in a developing country: 10-Year experience at a tertiary medical center,” Vascular, vol. 29, no. 4, pp. 574-581, 2021, doi: https://doi.org/10.1177/1708538120965081

R. R. Riso, “Strategies for providing upper extremity amputees with tactile and hand position feedback - Moving closer to the bionic arm,” Technol. Health Care, vol. 7, no. 6, pp. 401–409, 1999, doi: https://doi.org/10.3233/thc-1999-7604

S. Raspopovic, G. Valle, and F. M. Petrini, “Sensory feedback for limb prostheses in amputees,” Nat. Mater., vol. 20, no. 7, pp. 925–939, 2021, doi: https://doi.org/10.1038/s41563-021-00966-9

O. Diaz-Hernandez and I. Salinas-Sanchez, “Towards artificial proprioception in prosthetic devices,” Int. J. Med. Sci., vol. 10, no. 1, pp. 1–5, 2023, doi: https://doi.org/10.14445/23939117/ijms-v10i1p101

J. Dideriksen, E. Siebold, S. Dosen, and M. Markovic, “Investigating the benefits of multivariable proprioceptive feedback for upper-limb prostheses,” IEEE Trans. Med. Robot. Bionics, vol. 6, no. 2, pp. 757–768, 2024, doi: https://doi.org/10.1109/TMRB.2024.3385983

F. Masiero, E. La Frazia, V. Ianniciello, and C. Cipriani, “Generating frequency selective vibrations in remote moving magnets,” Adv. Intell. Syst., vol. 6, no. 6, 2024, art. no. 2300751, doi: https://doi.org/10.1002/aisy.202300751

Y. Han et al., “Substitutive proprioception feedback of a prosthetic wrist by electrotactile stimulation,” Front. Neurosci., vol. 17, 2023, art. no. 1135687, doi: https://doi.org/10.3389/FNINS.2023.1135687

M. Guémann et al., “Sensory substitution of elbow proprioception to improve myoelectric control of upper limb prosthesis: experiment on healthy subjects and amputees,” J. Neuroeng. Rehabil., vol. 19, 2022, art. no. 59, doi: https://doi.org/10.1186/S12984-022-01038-Y

P. D. Marasco et al., “Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors,” Sci. Robot., vol. 6, no. 58, 2021, art. no. eabf3368, doi: https://doi.org/10.1126/scirobotics.abf3368

S. Su et al., “Neural evidence for functional roles of tactile and visual feedback in the application of myoelectric prosthesis,” J. Neural Eng., vol. 20, no. 1, 2023, art. no. 016038, doi: https://doi.org/10.1088/1741-2552/ACAB32

N. Piliugin et al., “Unraveling Sensory Restoration: Decoding Complex Behavioral Data through Peripheral Nerve Stimulation Analysis,” in 12th Int. Winter Conf. Brain-Comput. Interface (BCI), Gangwon, Corea, 2024, pp. 1-4, doi: https://doi.org/10.1109/BCI60775.2024.10480475

E. Romero and D. A. Elias, “Design of a haptic palmar-finger feedback system for upper limb myoelectric prosthesis model PUCP-Hand,” in 2022 Int. Conf. Elect. Comput. Energy Technol. (ICECET), Prague, Czech Republic, 2022, pp. 1-6,2022, doi: https://doi.org/10.1109/ICECET55527.2022.9872575

M. Gallone and M. D. Naish, “Scalp-Targeted Haptic Proprioception for Upper-Limb Prosthetics,” in 2022 Int. Conf. Rehabil. Robot. (ICORR), Rotterdam, Netherlands, 2022, pp. 1-6, doi: https://doi.org/10.1109/ICORR55369.2022.9896551

E. Trujillo-Trujillo, K. Acuna-Condori, and M. G. S. P. Paredes, “Evaluation of the skin fixation method of a haptic device to provide proprioceptive information for a sensory feedback prosthesis,” in 2022 IEEE ANDESCON, Barranquilla, Colombia, 2022, pp. 1-6, doi: https://doi.org/10.1109/ANDESCON56260.2022.9989931

M. Magbagbeola, M. Miodownik, S. Hailes, and R. C. V. Loureiro, “Correlating vibration patterns to perception of tactile information for long-term prosthetic limb use and continued rehabilitation of neuropathic pain,” in 2022 Int. Conf. Rehab. Robot. (ICORR), Rotterdam, Netherlands, 2022, pp. 1-6, doi: https://doi.org/10.1109/ICORR55369.2022.9896412

H. Cha et al., “Study on intention recognition and sensory feedback: control of robotic prosthetic hand through emg classification and proprioceptive feedback using rule-based haptic device,” IEEE Trans. Haptics, vol. 15, no. 3, pp. 560–571, 2022, doi: https://doi.org/10.1109/TOH.2022.3177714

E. Battaglia et al., “The rice haptic rocker: skin stretch haptic feedback with the Pisa/IIT softhand,” in 2017 IEEE World Haptics Conference (WHC), Munich, Germany, 2017, pp. 7-12, doi: https://doi.org/10.1109/WHC.2017.7989848

M. Mulvey, H. Fawkner, and M. I. Johnson, “An investigation into the perceptual embodiment of an artificial hand using transcutaneous electrical nerve stimulation (TENS) in intact-limbed individuals,” Technol. Health Care, vol. 22, no. 2, pp. 157–166, 2014, doi: https://doi.org/10.3233/THC-140780

E. D. Papaleo et al., “Integration of proprioception in upper limb prostheses through non-invasive strategies: a review,” J. Neuroeng. Rehabil., vol. 20, no. 1, 2023, art. no. 118, doi: https://doi.org/10.1186/S12984-023-01242-4

O. Lecompte, S. Achiche, and A. Mohebbi, “A review of proprioceptive feedback strategies for upper-limb myoelectric prostheses,” IEEE Trans. Med. Robot. Bionics., vol. 6, no. 3, pp. 930–939, 2024, doi: https://doi.org/10.1109/TMRB.2024.3407532

B. A. Petersen, P. J. Sparto, and L. E. Fisher, “Clinical measures of balance and gait cannot differentiate somatosensory impairments in people with lower-limb amputation,” Gait Posture, vol. 99, pp. 104–110, 2023, doi: https://doi.org/10.1016/J.GAITPOST.2022.10.018

J. M. Canton Leal, J. V. Gyllinsky, A. A. Arredondo Zamudio, and K. Mankodiya, “HapticLink: a force-based haptic feedback system for single and double lower-limb amputees,” in 2022 44th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC), Glasgow, Scotland, United Kingdom, 2022, pp. 4226-4229, doi: https://doi.org/10.1109/EMBC48229.2022.9871460

F. C. Gattinara Di Zubiena, L. D’Alvia, Z. Del Prete, and E. Palermo, “A static characterization of stretchable 3D-printed strain sensor for restoring proprioception in amputees,” in 2022 IEEE International Conference on Flexible and Printable Sensors and Systems (FLEPS), Vienna, Austria, 2022, pp. 1-4, doi: https://doi.org/10.1109/FLEPS53764.2022.9781497

F. C. G. Di Zubiena et al., “FEM deformation analysis of a transtibial prosthesis fed with gait analysis data: A preliminary step towards restoring proprioception in amputees,” in 2021 IEEE International Workshop on Metrology for Industry 4.0 & IoT (MetroInd4.0&IoT), Rome, Italy, 2021, pp. 493-498, doi: https://doi.org/10.1109/MetroInd4.0IoT51437.2021.9488482

A. Gardetto et al., “Reduction of phantom limb pain and improved proprioception through a TSR‐based surgical technique: a case series of four patients with lower limb amputation,” J. Clin. Med., vol. 10, no. 17, 2021, art. no. 4029, doi: https://doi.org/10.3390/JCM10174029

R. J. Foster et al., “Individuals with unilateral transtibial amputation exhibit reduced accuracy and precision during a targeted stepping task,” J. Biomech., vol. 105, 2020, art. no. 109785, doi: https://doi.org/10.1016/J.JBIOMECH.2020.109785

H. Charkhkar, B. P. Christie, and R. J. Triolo, “Sensory neuroprosthesis improves postural stability during Sensory Organization Test in lower-limb amputees,” Sci. Rep., vol. 10, no. 1, 2020, art. no. 6984, doi: https://doi.org/10.1038/s41598-020-63936-2

B. P. Christie et al., “Visuotactile synchrony of stimulation-induced sensation and natural somatosensation,” J. Neural. Eng., vol. 16, no. 3, 2019, art. no. 036025, doi: https://doi.org/10.1088/1741-2552/AB154C

R. A. Coker, E. R. Zellmer, and D. W. Moran, “Micro-channel sieve electrode for concurrent bidirectional peripheral nerve interface. Part B: Stimulation,” J. Neural. Eng., vol. 16, no. 2, 2019, art. no. 026002, doi: https://doi.org/10.1088/1741-2552/aaefab

A. Plauche, D. Villarreal, and R. D. Gregg, “A haptic feedback system for phase-based sensory restoration in above-knee prosthetic leg users,” IEEE Trans. Haptics., vol. 9, no. 3, pp. 421–426, 2016, doi: https://doi.org/10.1109/TOH.2016.2580507

L. Yang et al., “Utilization of a lower extremity ambulatory feedback system to reduce gait asymmetry in transtibial amputation gait,” Gait Posture, vol. 36, no. 3, pp. 631–634, 2012, doi: https://doi.org/10.1016/J.GAITPOST.2012.04.004

A. Ghiami Rad and B. Shahbazi, “A systematic investigation of sensorimotor mechanisms with intelligent prostheses in patients with ankle amputation while walking,” J. Mech. Behav. Biomed. Mater., vol. 151, 2024, art. no. 106357, doi: https://doi.org/10.1016/j.jmbbm.2023.106357

C. Wall and E. Kentala, “Control of sway using vibrotactile feedback of body tilt in patients with moderate and severe postural control deficits,” J. Vestib. Res., vol. 15, no. 5–6, pp. 313–325, 2005, doi: https://doi.org/10.3233/VES-2005-155-607

T. R. Farrell, R. F. Weir, C. W. Heckathorne, and D. S. Childress, “The effects of static friction and backlash on extended physiological proprioception control of a powered prosthesis,” J. Rehabil. Res. Dev., vol. 42, no. 3, pp. 327–341, 2005, doi: https://doi.org/10.1682/jrrd.2004.05.0052

K. J. Kuchenbecker, N. Gurari, and A. M. Okamura, “Effects of visual and proprioceptive motion feedback on human control of targeted movement,” in 2007 IEEE 10th Int. Conf. Rehab. Robot., Noordwijk, Netherlands, 2007, pp. 513-524, doi: https://doi.org/10.1109/ICORR.2007.4428474

N. Gurari, K. J. Kuchenbecker, and A. M. Okamura, “Stiffness discrimination with visual and proprioceptive cues,” in Proc. 3rd Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, Salt Lake City, UT, USA, 2009, pp. 121–126, doi: https://doi.org/10.1109/WHC.2009.4810845

A. Blank, A. M. Okamura, and K. J. Kuchenbecker, “Effects of proprioceptive motion feedback on sighted and non-sighted control of a virtual hand prosthesis,” in 2008 Symposium on Haptics Interfaces for Virtual Environment and Teleoperator Systems, Reno, NV, USA, 2008, pp. 141–142, doi: https://doi.org/10.1109/HAPTICS.2008.4479933

S. Wendelken et al., “Restoration of motor control and proprioceptive and cutaneous sensation in humans with prior upper-limb amputation via multiple Utah Slanted Electrode Arrays (USEAs) implanted in residual peripheral arm nerves,” J. Neuroeng. Rehab., vol. 14, no. 1, 2017, art. no. 121, doi: https://doi.org/10.1186/S12984-017-0320-4

B. Lima and F. L. Hammond, “Haptically-displayed proprioceptive feedback via simultaneous rotary skin stretch and vibrotactile stimulation,” in 2023 32nd IEEE International Conference on Robot and Human Interactive Communication (RO-MAN), Busan, Republic of Korea, 2023, pp. 241–247, doi: https://doi.org/10.1109/RO-MAN57019.2023.10309652

A. Mablekos-Alexiou, G. A. Bertos and E. Papadopoulos, “A biomechatronic Extended Physiological Proprioception (EPP) controller for upper-limb prostheses,” in 2015 IEEE/RSJ Int. Conf. Intel. Robots Syst. (IROS), Hamburg, Germany, 2015, pp. 6173-6178, doi: https://doi.org/10.1109/IROS.2015.7354257

D. J. Weber, R. Friesen, and L. E. Miller, “Interfacing the somatosensory system to restore touch and proprioception: essential considerations,” J. Mot. Behav., vol. 44, no. 6, pp. 403–418, 2012, doi: https://doi.org/10.1080/00222895.2012.735283

A. Ramos-Murguialday et al., “Proprioceptive feedback and brain computer interface (BCI) based neuroprostheses,” PLoS One, vol. 7, no. 10, 2012, art. no. e47048, doi: https://doi.org/10.1371/JOURNAL.PONE.0047048

R. A. Gaunt, J. A. Hokanson, and D. J. Weber, “Microstimulation of primary afferent neurons in the L7 dorsal root ganglia using multielectrode arrays in anesthetized cats: Thresholds and recruitment properties,” J. Neural. Eng., vol. 6, no. 5, 2009, art. no. 055009, doi: https://doi.org/10.1088/1741-2560/6/5/055009

G. A. Tabot, S. S. Kim, J. E. Winberry, and S. J. Bensmaia, “Restoring tactile and proprioceptive sensation through a brain interface,” Neurobiol. Dis., vol. 83, pp. 191–198, 2015, doi: https://doi.org/10.1016/J.NBD.2014.08.029

S. S. Srinivasan et al., “Agonist-antagonist myoneural interfaces in above-knee amputation preserve distal joint function and perception,” Ann. Surg., vol. 273, no. 3, pp. E115–E118, 2021, doi: https://doi.org/10.1097/SLA.0000000000004153

T. A. Kuiken et al., “Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation,” Proc. Natl. Acad. Sci. USA, vol. 104, no. 50, pp. 20061–20066, 2007, doi: https://doi.org/10.1073/pnas.0706525104

G. Li and T. A. Kuiken, “Modeling of prosthetic limb rotation control by sensing rotation of residual arm bone,” IEEE Trans. Biomed. Eng., vol. 55, no. 9, pp. 2134–2142, 2008, doi: https://doi.org/10.1109/TBME.2008.923914

A. Akhtar, et al., “Passive mechanical skin stretch for multiple degree-of-freedom proprioception in a hand prosthesis,” in 9th International Conference, EuroHaptics 2014, Versailles, France, 2014, pp. 120–128, doi: https://doi.org/10.1007/978-3-662-44196-1_16

J. D. Brown et al., “An exploration of grip force regulation with a low-impedance myoelectric prosthesis featuring referred haptic feedback,” J. Neuroeng. Rehabil., vol. 12, no. 1, 2015, art. no. 104, doi: https://doi.org/10.1186/S12984-015-0098-1

M. A. Schiefer et al., “Artificial tactile and proprioceptive feedback improves performance and confidence on object identification tasks,” PLoS One, vol. 13, no. 12, 2018, art. no. e0207659, doi: https://doi.org/10.1371/JOURNAL.PONE.0207659

E. J. Rouse, D. C. Nahlik, M. A. Peshkin, and T. A. Kuiken, “Development of a model osseo-magnetic link for intuitive rotational control of upper-limb prostheses,” IEEE Trans. Neural. Syst. Rehabil. Eng., vol. 19, no. 2, pp. 213–220, 2011, doi: https://doi.org/10.1109/TNSRE.2010.2102365

I. Cuberovic et al., “Learning of artificial sensation through long-term home use of a sensory-enabled prosthesis,” Front. Neurosci., vol. 13, 2019, art. no. 853, doi: https://doi.org/10.3389/FNINS.2019.00853

P. D. Marasco et al., “Illusory movement perception improves motor control for prosthetic hands,” Sci. Transl. Med., vol. 10, no. 432, 2018, art. no. eaao6990, doi: https://doi.org/10.1126/SCITRANSLMED.AAO6990

K. H. Sienko et al., “Potential mechanisms of sensory augmentation systems on human balance control,” Front. Neurol., vol. 9, 2018, art. no. 944, doi: https://doi.org/10.3389/FNEUR.2018.00944

T. J. Bates, J. R. Fergason, and S. N. Pierrie, “Technological advances in prosthesis design and rehabilitation following upper extremity limb loss,” Curr. Rev. Musculoskelet. Med., vol. 13, no. 4, pp. 485–493, 2020, doi: https://doi.org/10.1007/s12178-020-09656-6

D. K. Luu et al., “Artificial intelligence enables real-time and intuitive control of prostheses via nerve interface,” IEEE Trans. Biomed. Eng., vol. 69, no. 10, pp. 3051–3063, 2022, doi: https://doi.org/10.1109/TBME.2022.3160618

L. Vargas, H. H. Huang, Y. Zhu, and X. Hu, “Closed-loop control of a prosthetic finger via evoked proprioceptive information,” J. Neural. Eng., vol. 18, no. 6, 2021, art. no. 066029, doi: https://doi.org/10.1088/1741-2552/ac3c9e

C. C. Berger, S. Coppi, and H. H. Ehrsson, “Synchronous motor imagery and visual feedback of finger movement elicit the moving rubber hand illusion, at least in illusion-susceptible individuals,” Exp. Brain. Res., vol. 241, pp. 1021–1039, 2023, doi: https://doi.org/10.1007/s00221-023-06586-w

S. Srinivasan et al., “On prosthetic control: a regenerative agonist-antagonist myoneural interface,” Sci. Robot., vol. 2, no. 6, 2017, art. no. eaan2971, doi: https://doi.org/10.1126/scirobotics.aan2971

S. S. Srinivasan, M. Diaz, M. Carty, and H. M. Herr, “Towards functional restoration for persons with limb amputation: A dual-stage implementation of regenerative agonist-antagonist myoneural interfaces,” Sci. Rep., vol. 9, 2019, art. no. 1981, doi: https://doi.org/10.1038/S41598-018-38096-Z

H. M. Herr et al., “Reinventing extremity amputation in the era of functional limb restoration,” Ann. Surg., vol. 273, no. 2, pp. 269–279, 2021, doi: https://doi.org/10.1097/SLA.0000000000003895

S. S. Srinivasan, S. Gutierrez-Arango, A. C. Teng and H. M. Herr, “Neural interfacing architecture enables enhanced motor control and residual limb functionality postamputation,” Proc. Natl. Acad. Sci. USA, vol. 118, no. 9, 2021, art. no. e2019555118, doi: https://doi.org/10.1073/PNAS.2019555118

M. A. Garenfeld et al., “Closed-loop control of a multifunctional myoelectric prosthesis with full-state anatomically congruent electrotactile feedback,” IEEE Trans. Neural Syst. Rehab. Eng., vol. 31, pp. 2090–2100, 2023, doi: https://doi.org/10.1109/TNSRE.2023.3267273

M. A. Garenfeld et al., “Amplitude versus spatially modulated electrotactile feedback for myoelectric control of two degrees of freedom,” J. Neural Eng., vol. 17, no. 4, 2020, art. no. 046034, doi: https://doi.org/10.1088/1741-2552/aba4fd

E. Battaglia et al., “Skin stretch haptic feedback to convey closure information in anthropomorphic, under-actuated upper limb soft prostheses,” IEEE Trans. Haptics, vol. 12, no. 4, pp. 508–520, 2019, doi: https://doi.org/10.1109/TOH.2019.2915075

M. Rossi et al., “HapPro: a wearable haptic device for proprioceptive feedback,” IEEE Trans. Biomed. Eng., vol. 66, no. 1, pp. 138–149, 2019, doi: https://doi.org/10.1109/TBME.2018.2836672

Descargas

Publicado

2025-04-08

Cómo citar

Diaz-Hernandez, O. (2025). Panorama Científico y Técnico sobre Propiocepción Artificial en Prótesis . Revista Mexicana De Ingenieria Biomedica, 46(1), 1–19. https://doi.org/10.17488/RMIB.46.1.1465

Número

Sección

Artículos de Revisión

Citas Dimensions